Skip to main content Accesibility Help

The Coxeter–Todd lattice, the Mitchell group, and related sphere packings

  • J. H. Conway (a1) and N. J. A. Sloane (a2)

This paper studies the Coxeter–Todd lattice its automorphism group (which is Mitchell's reflection group 6·PSU(4, 3)·2), and the associated 12-dimensional real lattice K12. We give several constructions for , which is a Z[ω]-lattice where ω = e2πi/3; enumerate the congruence classes of and where θ = ω − ω¯; prove the lattice is unique; determine its covering radius and deep holes; and study its connections with the lattice E6 and the Leech lattice. A number of new dense lattices in dimensions up to about 107 are constructed. We also give an explicit basis for the invariants of the Mitchell group. The paper concludes with an extensive bibliography.

Hide All
(1)Barnes, E. S. and Sloane, N. J. A.New lattice packings of spheres. Canad. J. Math. 35 (1983) 117130.
(2)Benard, M.Characters and Schur indices of the unitary reflection group [3 2 1]3. Pacific J. Math. 58 (1975) 309321.
(3)Bos, A., Conway, J. H. and Sloane, N. J. A.Further lattice packings in high dimensions. Mathematika 29 (1982) 171180.
(4)Bourbaki, N.Groupes et algèbres de Lie, chap. 4–6 (Hermann, Paris, 1968).
(5)Bruen, A. A. and Hirschfeld, J. W. P.Applications of line geometry over finite fields. II. The Hermitian surface. Geometriae Dedicata 7 (1978) 333353, esp. p. 340.
(6)Carter, R.Simple groups of Lie type (Wiley, New York 1972).
(7)Chevalley, C.Invariants of finite groups generated by reflections. Amer. J. Math. 67 (1955) 778782.
(8)Cohen, A. M.Finite complex reflection groups. Ann. Sci. Ecole Norm. Sup. 9 (1976), 379436.
(9)Conway, J. H.A group of order 8,315,553,613,086,720,000. Bull. Lond. Math. Soc. 1 (1969) 7988.
(10)Conway, J. H.A characterisation of Leech's lattice. Inventiones math. 7 (1969) 137142.
(11)Conway, J. H. Three lectures on exceptional groups. In Finite simple groups, ed. Powell, M. B. and Higman, G. (Academic Press, New York 1971), pp. 215247.
(12)Conway, J. H. The miracle octad generator. In Topics in group theory and computation, ed. Curran, M. P. J. (Academic Press, New York 1977), pp. 6268.
(13)Conway, J. H., Parker, R. A. and Sloane, N. J. A.The covering radius of the Leech lattice. Proc. Royal Soc. London, Ser. A, 380 (1982) 261290.
(14)Conway, J. H., Pless, V. and Sloane, N. J. A.Self-dual codes over GF(3) and GF(4) of length not exceeding 16. IEEE Trans. Information Theory IT-25 (1979) 312322.
(15)Conway, J. H. and Sloane, N. J. A.On the enumeration of lattices of determinant one. J. Number Theory 15 (1982) 8394.
(16)Conway, J. H. and Sloane, N. J. A.Fast quantizing and decoding algorithms for lattice quantizers and codes. IEEE Trans. Information Theory IT-28 (1982) 227232.
(17)Conway, J. H. and Sloane, N. J. A.Laminated lattices. Ann. of Math. 116 (1982) 593620.
(18)Conway, J. H. and Sloane, N. J. A.Complex and integral laminated lattices. Trans. Amer. Math. Soc. (in the Press.)
(19)Conway, J. H. and Sloane, N. J. A. On the Voronoi regions of certain lattices. (In preparation.)
(20)Coxeter, H. S. M.The product of the generators of a finite group generated by reflections. Duke Math. J. 18 (1951) 765782.
(21)Coxeter, H. S. M.Finite groups generated by unitary reflections. Abh. Math. Sem. Univ. Hamburg 31 (1967) 125135.
(22)Coxeter, H. S. M.Regular complex polytopes. (Cambridge University Press 1974).
(23)Coxeter, H. S. M. and Todd, J. A.An extreme duodenary form. Canad. J. Math. 5 (1953), 384392.
(24)Curtis, R. T.On subgroups of.0. I: Lattice stabilizers. J. Algebra, 27 (1973) 549573.
(25)Dickson, L. E.Linear groupe with an exposition of the Galois field theory (reprinted by Dover Publications, New York 1958).
(26)Dieudonné, J. A.La géométrie des groupes classiques, 3rd ed. (Springer-Verlag, New York, 1971), esp. p. 109.
(27)Edge, W. L.The geometry of an orthogonal group in six variables. Proc. Lona. Math. Soc. 8 (1958) 416446.
(28)Edge, W. L.The partitioning of an orthogonal group in six variables. Proc. Roy. Soc. London, Ser. A, 247 (1958) 539549.
(29)Feit, W.Some lattices over Q(√−3). J. Algebra 52 (1978) 248263.
(30)Flatto, L.Basic sets of invariants for finite reflection groups. Bull. Amer. Math. Soc. 74 (1968) 730734.
(31)Flatto, L.Invariants of finite reflection groups and mean value problems. II. Amer. J. Math. 92 (1970) 552561.
(32)Flatto, L.Invariants of finite reflection groups. L'Enseignement Math. 24 (1978) 237292.
(33)Flatto, L. and Wiener, M. M.Invariants of finite reflection groups and mean value problems. Amer. J. Math. 91 (1969) 591598.
(34)Flatto, L. and Wiener, M. M.Regular polytopes and harmonic polynomials. Canad. J. Math. 22 (1970) 721.
(35)Gorenstein, D.The classification of finite simple groups. I. Simple groups and local analysis. Bull. Amer. Math. Soc. 1 (1979) 43199.
(36)Gorenstein, D.Finite simple groups (Plenum, New York 1982).
(37)Hamill, C. M.On a finite group of order 6,531,840. Proc. Lond. Math. Soc. 52 (1951), 401454.
(38)Hartley, E. M.A sextic primal in five dimensions. Proc. Cambridge Philos. Soc. 46 (1950), 91105.
(39)Hartley, E. M.Two maximal subgroups of a collineation group in five dimensions. Proc. Cambridge Philos. Soc. 46 (1950) 555569.
(40)Kantor, W. M. Generation of linear groups. In The geometric vein: The Coxeter festchrift, ed. Davis, C. et al. (Springer-Verlag, New York 1981), pp. 497509.
(41)Leech, J. and Sloane, N. J. A.Sphere packing and error-correcting codes. Canad. J. Math. 23 (1971) 718745.
(42)Lindsey, J. H. II. A correlation between PSU4(3), the Suzuki group, and the Conway group. Trans. Amer. Math. Soc. 157 (1971) 189204.
(43)Lindsey, J. H. II. Finite linear groups of degree six. Canad. J. Math. 5 (1971) 771790.
(44)MacWilliams, F. J., Odlyzko, A. M., Sloane, N. J. A. and Ward, H. N.Self-dual codes over GF(4). J. Combinatorial Theory, A 25 (1978) 288318.
(45)Mathlab Group, Macsyma Reference Manual (Laboratory for Computer Science, M.I.T., Cambridge, MA, Version 9 1977).
(46)Mitchell, H. H.Determination of all primitive collineation groups in more than four variables. Amer. J. Math. 36 (1914) 112.
(47)Niemeier, H.-V.Definite quadratische Formen der Dimension 24 und Diskriminante 1. J. Number Theory 5 (1973) 142178.
(48)Norton, S.A bound for the covering radius of the Leech lattice. Proc. Roy. Soc. London, Ser. A, 380 (1982) 259260.
(49)Shephard, G. C.Unitary groups generated by reflections. Canad. J. Math. 5 (1953) 364383.
(50)Shephard, G. C. and Todd, J. A.Finite unitary reflection groups. Canad. J. Math. 6 (1954), 274304.
(51)Sloane, N. J. A.Error-correcting codes and invariant theory: new applications of a nineteenth-century technique. Amer. Math. Monthly 84 (1977) 82107.
(52)Sloane, N. J. A.Codes over GF(4) and complex lattices. J. Algebra 52 (1978) 168181.
(53)Sloane, N. J. A. Self-dual codes and lattices. In Relations between combinatorics and other parts of mathematics. Proc. Sympos. Pure Math. vol. xxxiv (Amer. Math. Soc., Providence, Rhode Island 1979), pp. 273308.
(54)Sloane, N. J. A.Tablee of sphere packings and spherical codes. IEEE Trans. Information Theory IT-27 1981) 327338.
(55)Springer, T. A.Invariant theory. Lecture Notes Math. 585 (Springer-Verlag, New York, 1977).
(56)Stanley, R. P.Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. 1 (1979) 475511.
(57)Tits, J. Classification of algebraic semisimple groups. In Algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math. vol. IX (Amer. Math. Soc., Providence, Rhode Island 1966), pp. 3362.
(58)Todd, J. A.The invariants of a finite collineation group in five dimensions. Proc. Cambridge Philos. Soc. 46 (1950) 7390.
(59)Todd, J. A.The characters of a collineation group in five dimensions. Proc. Boy. Soc. London, Ser. A 200 (1950) 320336.
(60)Wilson, R. A. The complex Leech lattice and maximal subgroups of the Suzuki group. J. Algebra (in the Press).
(61)Wilson, R. A. The maximal subgroups of Conway's group Co1. J. Algebra (in the Press).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed