Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 21
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Hickman, Jonathan 2016. Uniform <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msubsup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msubsup><mml:mtext>–</mml:mtext><mml:msubsup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msubsup></mml:math> improving for dilated averages over polynomial curves. Journal of Functional Analysis, Vol. 270, Issue. 2, p. 560.


    Bak, Jong-Guk and Ham, Seheon 2014. Restriction of the Fourier transform to some complex curves. Journal of Mathematical Analysis and Applications, Vol. 409, Issue. 2, p. 1107.


    Choi, Youngwoo 2014. Uniform Lorentz norm estimates for convolution operators. Journal of Inequalities and Applications, Vol. 2014, Issue. 1, p. 256.


    Ham, Seheon and Lee, Sanghyuk 2014. Restriction estimates for space curves with respect to general measures. Advances in Mathematics, Vol. 254, p. 251.


    Hickman, Jonathan 2014. AN AFFINE FOURIER RESTRICTION THEOREM FOR CONICAL SURFACES. Mathematika, Vol. 60, Issue. 02, p. 374.


    Choi, Youngwoo 2013. Uniform Estimates for Damped Radon Transform on the Plane. Abstract and Applied Analysis, Vol. 2013, p. 1.


    Gressman, Philip T. 2013. Uniform Sublevel Radon-like Inequalities. Journal of Geometric Analysis, Vol. 23, Issue. 2, p. 611.


    Dendrinos, Spyridon and Stovall, Betsy 2012. Uniform estimates for the X-ray transform restricted to polynomial curves. Journal of Functional Analysis, Vol. 262, Issue. 12, p. 4986.


    Choi, Youngwoo 2011. Convolution estimates related to space curves. Journal of Inequalities and Applications, Vol. 2011, Issue. 1, p. 91.


    Adams, David R. 2010. Capacity and potentials on curves. Forum Mathematicum, Vol. 22, Issue. 5,


    Ikromov, I. A. 2010. Summability of oscillatory integrals over parameters and the boundedness problem for fourier transforms on curves. Mathematical Notes, Vol. 87, Issue. 5-6, p. 700.


    Oberlin, Daniel M. 2010. Convolution with measures on flat curves in low dimensions. Journal of Functional Analysis, Vol. 259, Issue. 7, p. 1799.


    Stovall, Betsy 2010. Endpoint <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> bounds for integration along certain polynomial curves. Journal of Functional Analysis, Vol. 259, Issue. 12, p. 3205.


    Икромов, Исроил Акрамович and Ikromov, Isroil Akramovich 2010. Суммируемость осцилляторных интегралов по параметрам и проблема об ограничении преобразования Фурье на кривых. Математические заметки, Vol. 87, Issue. 5, p. 734.


    Dendrinos, Spyridon Laghi, Norberto and Wright, James 2009. Universal <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> improving for averages along polynomial curves in low dimensions. Journal of Functional Analysis, Vol. 257, Issue. 5, p. 1355.


    BAK, JONG-GUK OBERLIN, DANIEL M. and SEEGER, ANDREAS 2008. RESTRICTION OF FOURIER TRANSFORMS TO CURVES II: SOME CLASSES WITH VANISHING TORSION. Journal of the Australian Mathematical Society, Vol. 85, Issue. 01, p. 1.


    Dendrinos, Spyridon and Wright, James 2008. Fourier restriction, polynomial curves and a geometric inequality. Comptes Rendus Mathematique, Vol. 346, Issue. 1-2, p. 45.


    Bak, Jong-Guk Lee, Jungjin and Lee, Sanghyuk 2007. Weighted restriction theorems for space curves. Journal of Mathematical Analysis and Applications, Vol. 334, Issue. 2, p. 1232.


    Choi, Youngwoo 2003. The Lp- Lp mapping properties of convolution operators with the affine arclength measure on space curves. Journal of the Australian Mathematical Society, Vol. 75, Issue. 02, p. 247.


    Bak, J.-G. McMichael, D. and Oberlin, D. 1995. Lp-Lq estimates off the line of duality. Journal of the Australian Mathematical Society, Vol. 58, Issue. 02, p. 154.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 108, Issue 1
  • July 1990, pp. 89-96

Degenerate curves and harmonic analysis

  • S. W. Drury (a1)
  • DOI: http://dx.doi.org/10.1017/S0305004100068973
  • Published online: 24 October 2008
Abstract

This article deals with several related questions in harmonic analysis which are well understood for non-degenerate curves in ℝn, but poorly understood in the degenerate case. These questions invariably involve a positive ‘reference’ measure on the curve. In the non-degenerate case the choice of measure is not particularly critical and it is usually taken to be the Euclidean arclength measure. Since the questions considered here are invariant under the group of affine motions (of determinant 1), the correct choice of reference measure is the affine arclength measure. We refer the reader to Guggenheimer [8] for information on affine geometry. When the curve has degeneracies, the choice of measure becomes critical and it is the affine arclength measure which yields the most powerful results. From the Euclidean point of view the affine arclength measure has correspondingly little mass near the degeneracies and thus compensates automatically for the poor behaviour there. This principle should also be valid for general submanifolds of ℝn but alas the affine geometry of submanifolds is itself not well understood in general.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]C. Bennet and R. Sharpley . Interpolation of Operators (Academic Press, 1988).

[2]M. Christ . On the restriction of the Fourier transform to curves: endpoint results and the degenerate case. Trans. Amer. Math. Soc. 287 (1985), 223238.

[3]S. W. Drury . Restrictions of Fourier transforms to curves. Ann. Inst. Fourier (Grenoble), 35 (1985), 117123.

[7]A. Greenleaf . Principal curvature in harmonic analysis. Indiana Univ. Math. J. 30 (1981), 519537.

[9]D. M. Oberlin . Convolution estimates for some measures on curves. Proc. Amer. Math. Soc. 99 (1987), 5660.

[10]E. Prestini . A restriction theorem for space curves. Proc. Amer. Math. Soc. 70 (1978), 810.

[12]E. M. Stein and S. Wainger . Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc. 84 (1978), 12391295.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×