Skip to main content
×
Home
    • Aa
    • Aa

The determination of convex bodies from the mean of random sections

  • Paul Goodey (a1) and Wolfgang Weil (a2)
Abstract

Random sectioning of particles (compact sets in ℝ3 with interior points) is a familiar procedure in stereology where it is used to estimate particle quantities like volume or surface area from planar or linear sections (see, for example, the survey [23] or the book [20]). In the following, we study the problem whether the whole shape of a convex particle K can be estimated from random sections. If E is an IUR (isotropic, uniform, random) line or plane intersecting K then the intersection Xk = KE is a (k-dimensional, k = 1 or 2) random set. It is clear that the distribution of Xk determines K uniquely and that if E1,…, En are such flats, the most natural estimator for K would be the convex hull

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] T. Bonnesen and W. Fenchel . Theorie der Konvexen Körper (Springer-Verlag, 1934).

[5] P. Goodey and W. Weil . Translative integral formulae for convex bodies. Aequationes Math. 34 (1987), 6477.

[6] P. Goodey and W. Weil . Integral geometric formulae for projection functions. Geom. Dedicata 41 (1992), 117126.

[7] J. F. C. Kingman . Random secants of a convex body. J. Appl. Probab. 6 (1969), 660672.

[8] K. Leichtweiβ . Konvexe Mengen (Springer-Verlag, 1980).

[10] C. Mallows and J. Clark . Linear-intercept distributions do not characterize plane sets. J. Appl. Probab. 7 (1970), 240244.

[12] C. Müller . Spherical Harmonics (Springer-Verlag, 1966).

[14] R. Schneider . Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z. 101 (1967), 7182.

[15] R. Schneider . Über eine Integralgleichung in der Theorie der konvexen Körper. Math. Nachr. 44 (1970), 5575.

[16] R. Schneider . Rekonstruktion eines konvexen Körpers aus seinen Projektionen. Math. Nachr. 79 (1977), 325329.

[18] R. Schneider and W. Weil . Zonoids and related topics. In Convexity and its Applications (editors P. Gruber and J. M. Wills ) (Birkhäuser, 1983). pp. 296317.

[19] R. Schneider and W. Weil . Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129 (1986), 6780.

[21] P. Waksman . Plane polygons and a conjecture of Blaschke's. Adv. in Appl. Probab. 17 (1985), 774793.

[22] W. Weil . Centrally symmetric convex bodies and distributions, II. Israel J. Math. 32 (1979), 173182.

[23] W. Weil . Stereology – a survey for geometers. In Convexity and its Applications (editors P. Gruber and J. M. Wills ) (Birkhäuser, 1983). pp. 360412.

[24] W. Weil . Iterations of translative integral formulae and non-isotropic Poisson processes of particles. Math. Z. 205 (1990), 531551.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 24 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.