Skip to main content
    • Aa
    • Aa

The determination of convex bodies from the mean of random sections

  • Paul Goodey (a1) and Wolfgang Weil (a2)

Random sectioning of particles (compact sets in ℝ3 with interior points) is a familiar procedure in stereology where it is used to estimate particle quantities like volume or surface area from planar or linear sections (see, for example, the survey [23] or the book [20]). In the following, we study the problem whether the whole shape of a convex particle K can be estimated from random sections. If E is an IUR (isotropic, uniform, random) line or plane intersecting K then the intersection Xk = KE is a (k-dimensional, k = 1 or 2) random set. It is clear that the distribution of Xk determines K uniquely and that if E1,…, En are such flats, the most natural estimator for K would be the convex hull

Hide All
[1]Adler R. J. and Pyke R.. Problem 91–3. IMS Bulletin 20 (1991), 406407.
[2]Artstein Z. and Vitale R. A.. A strong law of large numbers for random compact sets. Ann. Probab. 5 (1975), 879882.
[3]Bonnesen T. and Fenchel W.. Theorie der Konvexen Körper (Springer-Verlag, 1934).
[4]Erdélyi A., Magnus W., Oberhettinger F. and Tricomi E. G.. Higher Transcendental Functions, vol. 2 (McGraw-Hill, 1953).
[5]Goodey P. and Weil W.. Translative integral formulae for convex bodies. Aequationes Math. 34 (1987), 6477.
[6]Goodey P. and Weil W.. Integral geometric formulae for projection functions. Geom. Dedicata 41 (1992), 117126.
[7]Kingman J. F. C.. Random secants of a convex body. J. Appl. Probab. 6 (1969), 660672.
[8]Leichtweiβ K.. Konvexe Mengen (Springer-Verlag, 1980).
[9]Little J. J.. An iterative method for reconstructing convex polyhedra from extended Gaussian images. In Proceedings American Association for Artificial Intelligence (AAAI, 1983). pp. 247250.
[10]Mallows C. and Clark J.. Linear-intercept distributions do not characterize plane sets. J. Appl. Probab. 7 (1970), 240244.
[11]Matheron G.. Random Sets and Integral Geometry (Wiley, 1975).
[12]Müller C.. Spherical Harmonics (Springer-Verlag, 1966).
[13]Nagel W.. Orientation dependent chord length distributions characterize convex polygons, submitted.
[14]Schneider R.. Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z. 101 (1967), 7182.
[15]Schneider R.. Über eine Integralgleichung in der Theorie der konvexen Körper. Math. Nachr. 44 (1970), 5575.
[16]Schneider R.. Rekonstruktion eines konvexen Körpers aus seinen Projektionen. Math. Nachr. 79 (1977), 325329.
[17]Schneider R.. Boundary structure and curvature of convex bodies. In Contributions to Geometry, Proc. Geometry Sympos. Siegen 1978 (editors Tölke J. and Wills J. M.) (Birkhäuser, 1979). pp. 1359.
[18]Schneider R. and Weil W.. Zonoids and related topics. In Convexity and its Applications (editors Gruber P. and Wills J. M.) (Birkhäuser, 1983). pp. 296317.
[19]Schneider R. and Weil W.. Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129 (1986), 6780.
[20]Stoyan D., Kendall W. S. and Mecke J.. Stochastic Geometry and its Applications (Akademie-Verlag, 1987).
[21]Waksman P.. Plane polygons and a conjecture of Blaschke's. Adv. in Appl. Probab. 17 (1985), 774793.
[22]Weil W.. Centrally symmetric convex bodies and distributions, II. Israel J. Math. 32 (1979), 173182.
[23]Weil W.. Stereology – a survey for geometers. In Convexity and its Applications (editors Gruber P. and Wills J. M.) (Birkhäuser, 1983). pp. 360412.
[24]Weil W.. Iterations of translative integral formulae and non-isotropic Poisson processes of particles. Math. Z. 205 (1990), 531551.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 34 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.