Skip to main content Accessibility help
×
Home

Diagrams and discrete extensions for finitary 2-representations

  • AARON CHAN (a1) and VOLODYMYR MAZORCHUK (a1)

Abstract

In this paper we introduce and investigate the notions of diagrams and discrete extensions in the study of finitary 2-representations of finitary 2-categories.

Copyright

References

Hide All
[1] Alperin, J. Diagrams for modules. J. Pure Appl. Algebra 16 (1980), no. 2, 111119.
[2] Bernstein, J., Frenkel, I. and Khovanov, M. A categorification of the Temperley–Lieb algebra and Schur quotients of U(2) via projective and Zuckerman functors. Selecta Math. (N.S.) 5 (1999), no. 2, 199241.
[3] Chuang, J. and Rouquier, R. Derived equivalences for symmetric groups and 2 -categorification. Ann. of Math. (2) 167 (2008), no. 1, 245298.
[4] Crane, L. Clock and category: is quantum gravity algebraic? J. Math. Phys. 36 (1995), no. 11, 61806193.
[5] Crane, L. and Frenkel, I. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (1994), no. 10, 51365154.
[6] Elias, B. The two-colour Soergel calculus. Composito. Math. 152 (2016), no. 2, 327398.
[7] Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V. Tensor categories. (American Mathematical Society, 2015).
[8] Ganyushkin, O., Mazorchuk, V. and Steinberg, B. On the irreducible representations of a finite semigroup. Proc. Amer. Math. Soc. 137 (2009), no. 11, 35853592.
[9] Grensing, A.-L. and Mazorchuk, V. Categorification of the Catalan monoid. Semigroup Forum 89 (2014), no. 1, 155168.
[10] Grensing, A.-L. and Mazorchuk, V. Finitary 2-categories associated with dual projection functors. Commun. Contemp. Math. 19 (2017), no. 3, 1650016, 40 pp.
[11] Huerfano, R. and Khovanov, M. A category for the adjoint representation. J. Algebra 246 (2001), no. 2, 514542.
[12] Kazhdan, D. and Lusztig, G. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165184.
[13] Khovanov, M. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359426.
[14] Kildetoft, T. and Mazorchuk, V. Parabolic projective functors in type A. Adv. Math. 301 (2016), 785803.
[15] Kudryavtseva, G. and Mazorchuk, V. On multisemigroups. Port. Math. 72 (2015), no. 1, 4780.
[16] Leinster, T. Basic bicategories. Preprint arXiv:math/9810017.
[17] Lusztig, G. On a theorem of Benson and Curtis. J. Algebra 71 (1981), no. 2, 490498.
[18] Mac Lane, S. Categories for the Working Mathematician (Springer–Verlag, 1998).
[19] Mazorchuk, V. and Miemietz, V. Cell 2-representations of finitary 2-categories. Compositi. Math. 147 (2011), 15191545.
[20] Mazorchuk, V. and Miemietz, V. Additive versus abelian 2-representations of fiat 2-categories. Moscow Math. J. 14 (2014), no. 3, 595615.
[21] Mazorchuk, V. and Miemietz, V. Endmorphisms of cell 2-representations. Int. Math. Res. Notes Vol. 2016, No. 24, 74717498.
[22] Mazorchuk, V. and Miemietz, V. Morita theory for finitary 2-categories. Quantum Topol. 7 (2016), no. 1, 128.
[23] Mazorchuk, V. and Miemietz, V. Transitive 2-representations of finitary 2-categories. Trans. Amer. Math. Soc. 368 (2016), no. 11, 76237644.
[24] Mazorchuk, V. and Miemietz, V. Isotypic faithful 2-representations of -simple fiat 2-categories. Math. Z. 282 (2016), no. 1-2, 411434.
[25] Munn, W. Matrix representations of semigroups. Proc. Camb. Phil. Soc. 53 (1957), 512.
[26] Psaroudakis, C. and Vitória, J. Recollements of module categories. Appl. Categ. Structures 22 (2014), no. 4, 579593.
[27] Ringel, C.M. Exceptional modules are tree modules. Linear Algebra Appl. 275/276 (1998), 471493.
[28] Rouquier, R. 2-Kac-Moody algebras. Preprint arXiv:0812.5023.
[29] Rouquier, R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloquium 19 (2012), 359410.
[30] Shan, P., Varagnolo, M. and Vasserot, E. On the center of quiver-Hecke algebras. Duke Math. J. 166 (2017), no. 6, 10051101.
[31] Stroppel, C. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors. Duke Math. J. 126 (2005), no. 3, 547596.
[32] Xantcha, Q. Gabriel 2-quivers for finitary 2-categories. J. Lond. Math. Soc. (2) 92 (2015), no. 3, 615632.
[33] Zhang, X. Duflo involutions for 2-categories associated to tree quivers. J. Algebra Appl. 15 (2016), no. 3, 1650041, 25 pp.
[34] Zhang, X. Simple transitive 2-representations and Drinfeld center for some finitary 2-categories. J. Pure Appl. Algebra 222 (2018), no. 1, 97130.
[35] Zimmermann, J. Simple transitive 2-representations of Soergel bimodules in type B 2. J. Pure Appl. Algebra 221 (2017), no. 3, 666690.

Related content

Powered by UNSILO

Diagrams and discrete extensions for finitary 2-representations

  • AARON CHAN (a1) and VOLODYMYR MAZORCHUK (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.