[1] Alperin, J. Diagrams for modules. J. Pure Appl. Algebra 16 (1980), no. 2, 111–119.

[2] Bernstein, J., Frenkel, I. and Khovanov, M. A categorification of the Temperley–Lieb algebra and Schur quotients of *U*(_{2}) via projective and Zuckerman functors. Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. [3] Chuang, J. and Rouquier, R. Derived equivalences for symmetric groups and _{2} -categorification. Ann. of Math. (2) 167 (2008), no. 1, 245–298. [4] Crane, L. Clock and category: is quantum gravity algebraic? J. Math. Phys. 36 (1995), no. 11, 6180–6193.

[5] Crane, L. and Frenkel, I. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (1994), no. 10, 5136–5154.

[6] Elias, B. The two-colour Soergel calculus. Composito. Math. 152 (2016), no. 2, 327–398.

[7] Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V. Tensor categories. (American Mathematical Society, 2015).

[8] Ganyushkin, O., Mazorchuk, V. and Steinberg, B. On the irreducible representations of a finite semigroup. Proc. Amer. Math. Soc. 137 (2009), no. 11, 3585–3592.

[9] Grensing, A.-L. and Mazorchuk, V. Categorification of the Catalan monoid. Semigroup Forum 89 (2014), no. 1, 155–168.

[10] Grensing, A.-L. and Mazorchuk, V. Finitary 2-categories associated with dual projection functors. Commun. Contemp. Math. 19 (2017), no. 3, 1650016, 40 pp.

[11] Huerfano, R. and Khovanov, M. A category for the adjoint representation. J. Algebra 246 (2001), no. 2, 514–542.

[12] Kazhdan, D. and Lusztig, G. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165–184.

[13] Khovanov, M. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359–426.

[14] Kildetoft, T. and Mazorchuk, V. Parabolic projective functors in type *A*. Adv. Math. 301 (2016), 785–803.

[15] Kudryavtseva, G. and Mazorchuk, V. On multisemigroups. Port. Math. 72 (2015), no. 1, 47–80.

[16] Leinster, T. Basic bicategories. Preprint arXiv:math/9810017.

[17] Lusztig, G. On a theorem of Benson and Curtis. J. Algebra 71 (1981), no. 2, 490–498.

[18] Mac Lane, S. Categories for the Working Mathematician (Springer–Verlag, 1998).

[19] Mazorchuk, V. and Miemietz, V. Cell 2-representations of finitary 2-categories. Compositi. Math. 147 (2011), 1519–1545.

[20] Mazorchuk, V. and Miemietz, V. Additive versus abelian 2-representations of fiat 2-categories. Moscow Math. J. 14 (2014), no. 3, 595–615.

[21] Mazorchuk, V. and Miemietz, V. Endmorphisms of cell 2-representations. Int. Math. Res. Notes Vol. 2016, No. 24, 7471–7498.

[22] Mazorchuk, V. and Miemietz, V. Morita theory for finitary 2-categories. Quantum Topol. 7 (2016), no. 1, 1–28.

[23] Mazorchuk, V. and Miemietz, V. Transitive 2-representations of finitary 2-categories. Trans. Amer. Math. Soc. 368 (2016), no. 11, 7623–7644.

[24] Mazorchuk, V. and Miemietz, V. Isotypic faithful 2-representations of -simple fiat 2-categories. Math. Z. 282 (2016), no. 1-2, 411–434. [25] Munn, W. Matrix representations of semigroups. Proc. Camb. Phil. Soc. 53 (1957), 5–12.

[26] Psaroudakis, C. and Vitória, J. Recollements of module categories. Appl. Categ. Structures 22 (2014), no. 4, 579–593.

[27] Ringel, C.M. Exceptional modules are tree modules. Linear Algebra Appl. 275/276 (1998), 471–493.

[28] Rouquier, R. 2-Kac-Moody algebras. Preprint arXiv:0812.5023.

[29] Rouquier, R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloquium 19 (2012), 359–410.

[30] Shan, P., Varagnolo, M. and Vasserot, E. On the center of quiver-Hecke algebras. Duke Math. J. 166 (2017), no. 6, 1005–1101.

[31] Stroppel, C. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors. Duke Math. J. 126 (2005), no. 3, 547–596.

[32] Xantcha, Q. Gabriel 2-quivers for finitary 2-categories. J. Lond. Math. Soc. (2) 92 (2015), no. 3, 615–632.

[33] Zhang, X. Duflo involutions for 2-categories associated to tree quivers. J. Algebra Appl. 15 (2016), no. 3, 1650041, 25 pp.

[34] Zhang, X. Simple transitive 2-representations and Drinfeld center for some finitary 2-categories. J. Pure Appl. Algebra 222 (2018), no. 1, 97–130.

[35] Zimmermann, J. Simple transitive 2-representations of Soergel bimodules in type *B* _{2}. J. Pure Appl. Algebra 221 (2017), no. 3, 666–690.