Skip to main content Accesibility Help
×
×
Home

Diagrams and discrete extensions for finitary 2-representations

  • AARON CHAN (a1) and VOLODYMYR MAZORCHUK (a1)
Abstract

In this paper we introduce and investigate the notions of diagrams and discrete extensions in the study of finitary 2-representations of finitary 2-categories.

Copyright
References
Hide All
[1] Alperin, J. Diagrams for modules. J. Pure Appl. Algebra 16 (1980), no. 2, 111119.
[2] Bernstein, J., Frenkel, I. and Khovanov, M. A categorification of the Temperley–Lieb algebra and Schur quotients of U(2) via projective and Zuckerman functors. Selecta Math. (N.S.) 5 (1999), no. 2, 199241.
[3] Chuang, J. and Rouquier, R. Derived equivalences for symmetric groups and 2 -categorification. Ann. of Math. (2) 167 (2008), no. 1, 245298.
[4] Crane, L. Clock and category: is quantum gravity algebraic? J. Math. Phys. 36 (1995), no. 11, 61806193.
[5] Crane, L. and Frenkel, I. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (1994), no. 10, 51365154.
[6] Elias, B. The two-colour Soergel calculus. Composito. Math. 152 (2016), no. 2, 327398.
[7] Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V. Tensor categories. (American Mathematical Society, 2015).
[8] Ganyushkin, O., Mazorchuk, V. and Steinberg, B. On the irreducible representations of a finite semigroup. Proc. Amer. Math. Soc. 137 (2009), no. 11, 35853592.
[9] Grensing, A.-L. and Mazorchuk, V. Categorification of the Catalan monoid. Semigroup Forum 89 (2014), no. 1, 155168.
[10] Grensing, A.-L. and Mazorchuk, V. Finitary 2-categories associated with dual projection functors. Commun. Contemp. Math. 19 (2017), no. 3, 1650016, 40 pp.
[11] Huerfano, R. and Khovanov, M. A category for the adjoint representation. J. Algebra 246 (2001), no. 2, 514542.
[12] Kazhdan, D. and Lusztig, G. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165184.
[13] Khovanov, M. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359426.
[14] Kildetoft, T. and Mazorchuk, V. Parabolic projective functors in type A. Adv. Math. 301 (2016), 785803.
[15] Kudryavtseva, G. and Mazorchuk, V. On multisemigroups. Port. Math. 72 (2015), no. 1, 4780.
[16] Leinster, T. Basic bicategories. Preprint arXiv:math/9810017.
[17] Lusztig, G. On a theorem of Benson and Curtis. J. Algebra 71 (1981), no. 2, 490498.
[18] Mac Lane, S. Categories for the Working Mathematician (Springer–Verlag, 1998).
[19] Mazorchuk, V. and Miemietz, V. Cell 2-representations of finitary 2-categories. Compositi. Math. 147 (2011), 15191545.
[20] Mazorchuk, V. and Miemietz, V. Additive versus abelian 2-representations of fiat 2-categories. Moscow Math. J. 14 (2014), no. 3, 595615.
[21] Mazorchuk, V. and Miemietz, V. Endmorphisms of cell 2-representations. Int. Math. Res. Notes Vol. 2016, No. 24, 74717498.
[22] Mazorchuk, V. and Miemietz, V. Morita theory for finitary 2-categories. Quantum Topol. 7 (2016), no. 1, 128.
[23] Mazorchuk, V. and Miemietz, V. Transitive 2-representations of finitary 2-categories. Trans. Amer. Math. Soc. 368 (2016), no. 11, 76237644.
[24] Mazorchuk, V. and Miemietz, V. Isotypic faithful 2-representations of -simple fiat 2-categories. Math. Z. 282 (2016), no. 1-2, 411434.
[25] Munn, W. Matrix representations of semigroups. Proc. Camb. Phil. Soc. 53 (1957), 512.
[26] Psaroudakis, C. and Vitória, J. Recollements of module categories. Appl. Categ. Structures 22 (2014), no. 4, 579593.
[27] Ringel, C.M. Exceptional modules are tree modules. Linear Algebra Appl. 275/276 (1998), 471493.
[28] Rouquier, R. 2-Kac-Moody algebras. Preprint arXiv:0812.5023.
[29] Rouquier, R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloquium 19 (2012), 359410.
[30] Shan, P., Varagnolo, M. and Vasserot, E. On the center of quiver-Hecke algebras. Duke Math. J. 166 (2017), no. 6, 10051101.
[31] Stroppel, C. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors. Duke Math. J. 126 (2005), no. 3, 547596.
[32] Xantcha, Q. Gabriel 2-quivers for finitary 2-categories. J. Lond. Math. Soc. (2) 92 (2015), no. 3, 615632.
[33] Zhang, X. Duflo involutions for 2-categories associated to tree quivers. J. Algebra Appl. 15 (2016), no. 3, 1650041, 25 pp.
[34] Zhang, X. Simple transitive 2-representations and Drinfeld center for some finitary 2-categories. J. Pure Appl. Algebra 222 (2018), no. 1, 97130.
[35] Zimmermann, J. Simple transitive 2-representations of Soergel bimodules in type B 2. J. Pure Appl. Algebra 221 (2017), no. 3, 666690.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed