Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-09-12T16:48:38.256Z Has data issue: false hasContentIssue false

Differential spaces of finite type

Published online by Cambridge University Press:  24 October 2008

Juan A. Navarro Gonzalez
Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, 06071-Badajoz, Spain

Abstract

This paper shows that the localization theory for algebras of smooth functions and Fréchet modules provides a basis for a theory of differential spaces of finite type, as well as the usual localization theory for commutative rings and modules grounds the theory of schemes. Moreover, most of the elementary results and proofs in the theory of schemes remain valid for differential spaces.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

[1]Dubuc., E. J.C-schemes. Amer. Jour. of Math. 103 (1981), 683690.Google Scholar
[2]Godement., R.Topologie algébrique et théorie des faisceaux. Act. Scient, et ind. 1252 (Hermann, 1964).Google Scholar
[3]Grothendieck., A.Eléments de Géomètrie Algébrique I. Grund. Math. Wiss. 166 (Springer-Verlag, 1971).Google Scholar
[4]Grothendieck., A.Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).Google Scholar
[5]Mallios., A.Topological Algebras. Selected topics. Math. Studies 124 (North-Holland, 1986).Google Scholar
[6]Moerdijk, I. and Reyes., G. E.Rings of smooth functions and their localizations I. Jour. of Algebra 99 (1986), 324336.Google Scholar
[7]Moerdijk, I. and Reyes., G. E. Rings of smooth functions and their localizations II. In Mathematical Logic and Theoretical Computer Science. Edited by Kueker, , Lopez-Escobar, , Smith, , Lecture notes in pure and applied mathematics 106 (Marcel Dekker, 1987).Google Scholar
[8]Moerdijk, I. and Reyes., G. E.Models for smooth infinitesimal analysis (Springer-Verlag, 1991).CrossRefGoogle Scholar
[9]Moerdijk, I. and Reyes., G. E.A smooth version of the Zariski topos. Advances in Math. 65 (1987), 229253.Google Scholar
[10]Muñoz., J.Caracterización de las álgebras diferenciables y síntesis espectral para módules sobre tales álgebras. Collectanea Math. XXIII (1972), 1783.Google Scholar
[11]Muñoz, J. and Ortega., J.Sobre las álgebras localmente convexas. Collectanea Math. XX (1969), 127149.Google Scholar
[12]Requejo., B. Localization in Fréchet algebras, to appear in Jour, of Math. Anal, and Appl.Google Scholar
[13]Requejo, B. and Sancho., J. B.Localization in rings of continuous functions. Topology and Appl. 57 (1994), 8793.Google Scholar