No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
Let l be the differential operator of order 2n defined by
where the coefficients are real continuous functions and pn > 0. The formally self-adjoint operator l determines a minimal closed symmetric linear operator L0 in the Hilbert space L2 (0, ∞) with domain dense in L2 (0, ∞) ((4), § 17). The operator L0 has a self-adjoint extension L which is not unique, but all such L have the same continuous spectrum ((4), § 19·4). We are concerned here with conditions on the pi which will imply that the spectrum of such an L is bounded below and discrete.