No CrossRef data available.
Published online by Cambridge University Press: 08 December 2011
Let (, d, μ) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H1(μ) and prove that its dual space is the known space RBMO(μ) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H1(μ) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderón–Zygmund operators from H1(μ) to L1(μ).