[Ab1]
Abouzaid, M.
A cotangent fibre generates the Fukaya category. Adv. Math.
228, no. 2 (2011), 894–939.

[Ab2]
Abouzaid, M.
Nearby Lagrangians with vanishing Maslov class are homotopy equivalent. Invent. Math.
189, no. 2 (2012), 251–313.

[Ab3]
Abouzaid, M.
On the Wrapped Fukaya category and based loops. J. Symplectic Geom.
10, no. 1 (2012), 27–79.

[AS]
Abouzaid, M. and Seidel, P.
An open string analogue of Viterbo functoriality. Geometry and Topology
14 (2010), 627–718.

[Arn]
Arnaud, M.–C.
On a theorem due to Birkhoff. Geom. Funct. Anal.
120 (2010), 1307–1316.

[Be1]
Bernard, P.
Existence of *C*
^{1,1} critical sub-solutions of the Hamilton–Jacobi equations on compact manifolds. Ann. Sci. École Norm. Sup.
40, no. 3 (2007), 445–452.

[Be2]
Bernard, P.
Symplectic Aspects of Mather theory. Duke Math. J.
136, no. 3 (2007), 401–420.

[BO1]
Bernard, P. and Oliveira dos Santos, J.
A geometric definition of the Aubry–Mather set. J. Top. Anal.
2, no. 3 (2010), 385–393.

[BO2]
Bernard, P. and Oliveira dos Santos, J.
A geometric definition of the Mañé-Mather set and a Theorem of Marie–Claude Arnaud. Math. Proc. Camb. Phil. Soc.
152 (2012), 167–178.

[BS]
Buhovsky, L. and Seyfaddini, S.
Uniqueness of generating Hamiltonians for continuous Hamiltonian flows. J. Symp. Geom.
11, no. 1 (2013), 37–52.

[C]
Chaperon, M.
Lois de conservation et géométrie symplectique. Comptes rendus de l'Académie des sciences. Série 1, Mathématique 312, no. 4 (1991), 345–348.

[dR]
de Rham, G.
Differentiable Manifolds. A Series of Comp. Studies in Math. **266** (Springer Verlag, Berlin-Heidelberg-New York, 1984).

[El]
Eliashberg, Y.
A theorem on the structure of wave fronts and its application in symplectic topology (in Russian). Funkstsional. Anal. i Prilozhen.
21, no. 3 (1987), 65–72.

[EG]
Evans, L. and Gariepy, R.
Measure theory and fine properties of functions. Stud. Adv. Math. (CRC Press, New York, 1992).

[Fe]
Federer, H.
Geometric Measure Theory, Classics in Math. Springer-Verlag, Berlin-Heidelberg-New York, 1969.

[FOOO]
Fukaya, K., Oh, Y.–G., Ohta, H. and Ono, K.
Lagrangian intersection Floer theory-anomaly and obstruction I - II. Stud. Adv. Math., vol. 46 (Amer. Math. Soc., International Press, 2009).

[FSS]
Fukaya, K., Seidel, P. and Smith, I.
Exact Lagrangian submanifolds in simply-connected cotangent bundles. Invent. Math.
172 (2008), 1–27.

[Hor]
Hörmander, L.
Fourier integral operators I. Acta Math.
127 (1971), 79–183.

[HLS]
Humiliére, V., Leclerq, R. and Seyfaddini, S.
Coisotropic rigidity and *C*
^{0}-symplectic geometry. Duke Math. J.
164, no. 4 (2015), 767–799.

[KO]
Kasturirangan, R. and Oh, Y.–G.
Floer homology of open subsets and a relative version of Arnold's conjecture. Math. Z.
236, no. 1 (2001), 151–189.

[Kra]
Kragh, T.
Parametrized ring-spectra and the nearby Lagrangian conjecture. Geometry and Topology
17, no. 2 (2013), 639–731.

[LauS]
Laudenbach, F. and Sikorav, J.–C.
Persistence of intersection with the zero section during a Hamiltonian isotopy into a cotangent bundle. Invent. Math
82, no. 2 (1985), 349–357.

[Mu]
Müller, S.
The group of Hamiltonian homeomorphisms in the *L*
^{∞}-norm. J. Korean Math. Soc.
45, no. 6 (2008), 1769–1784.

[N]
Nadler, D.
Microlocal branes are constructible sheaves. Selecta Math.
15, no. 4 (2009), 563–619.

[Oh1]
Oh, Y.–G.
Symplectic topology as the geometry of action functional, I. J. Differential Geom.
46 (1997) 499–577.

[Oh2]
Oh, Y.–G.
Symplectic topology as the geometry of action functional, II. Commun. Anal. Geom.
7 (1999), 1–55.

[Oh3]
Oh, Y.–G.
Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds in “The Breadth of Symplectic and Poisson Geometry”. Prog. Math.
232 (Birkhäuser, Boston, 2005), 525–570.

[Oh4]
Oh, Y.–G.
Locality of continuous Hamiltonian flows and Lagrangian intersection with the conormal of open subsets. J. Gökova Geom. Top.
1 (2007), 1–32.

[Oh5]
Oh, Y.–G.
Floer mini-max theory, the Cerf diagram, and the spectral invariants. J. Korean Mah. Soc.
46 (2009), 363–447.

[Oh6]
Oh, Y.–G.
Symplectic topology and Floer homology I & II. New Mathematical Monographs, no. 28 and 29 (Cambridge University Press, Cambridge, 2015).

[OM]
Oh, Y.–G. and Müller, S.
The group of Hamiltonian homeomorphisms and *C*
^{0} symplectic topology. J. Symp. Geom.
5 (2007), 167–219.

[PPS]
Paternain, G., Polterovich, L. and Siburg, K.
Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry–Mather theory. Mosc. Math. J.
3, no. 2 (2003), 593–619.

[Se]
Seidel, P.
Fukaya categories and Picard–Lefschetz theory. Zürich Lec. Advanced Math. (European Math. Soc., Zürich, 2008).

[Sik]
Sikorav, J. C.
Problémes d'intersections et de points fixes en géométrie hamiltonienne. Comment. Math. Helv.
62 (1987), 62–73.

[V1]
Viterbo, C.
Symplectic topology as the geometry of generating functions. Math. Ann.
292 (1992), 685–710.

[V2]
Viterbo, C. On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonian flows. *Internat. Math. Res. Notices*, (2006), article ID 34028. Erratum, ibid, (2006), article ID 38784.