Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Buschenhenke, Stefan 2015. A sharp $$L^p-L^q$$ L p - L q -Fourier restriction theorem for a conical surface of finite type. Mathematische Zeitschrift, Vol. 280, Issue. 1-2, p. 367.


    Bak, Jong-Guk and Ham, Seheon 2014. Restriction of the Fourier transform to some complex curves. Journal of Mathematical Analysis and Applications, Vol. 409, Issue. 2, p. 1107.


    Choi, Youngwoo 2014. Uniform Lorentz norm estimates for convolution operators. Journal of Inequalities and Applications, Vol. 2014, Issue. 1, p. 256.


    Ham, Seheon and Lee, Sanghyuk 2014. Restriction estimates for space curves with respect to general measures. Advances in Mathematics, Vol. 254, p. 251.


    Stovall, Betsy 2014. UniformLp-improving for weighted averages on curves. Analysis & PDE, Vol. 7, Issue. 5, p. 1109.


    Gressman, Philip T. 2013. Uniform Sublevel Radon-like Inequalities. Journal of Geometric Analysis, Vol. 23, Issue. 2, p. 611.


    Dendrinos, Spyridon and Stovall, Betsy 2012. Uniform estimates for the X-ray transform restricted to polynomial curves. Journal of Functional Analysis, Vol. 262, Issue. 12, p. 4986.


    Oberlin, Daniel M. 2010. Convolution with measures on flat curves in low dimensions. Journal of Functional Analysis, Vol. 259, Issue. 7, p. 1799.


    Stovall, Betsy 2010. Endpoint <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> bounds for integration along certain polynomial curves. Journal of Functional Analysis, Vol. 259, Issue. 12, p. 3205.


    Dendrinos, Spyridon Laghi, Norberto and Wright, James 2009. Universal <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> improving for averages along polynomial curves in low dimensions. Journal of Functional Analysis, Vol. 257, Issue. 5, p. 1355.


    BAK, JONG-GUK OBERLIN, DANIEL M. and SEEGER, ANDREAS 2008. RESTRICTION OF FOURIER TRANSFORMS TO CURVES II: SOME CLASSES WITH VANISHING TORSION. Journal of the Australian Mathematical Society, Vol. 85, Issue. 01, p. 1.


    Dendrinos, Spyridon and Wright, James 2008. Fourier restriction, polynomial curves and a geometric inequality. Comptes Rendus Mathematique, Vol. 346, Issue. 1-2, p. 45.


    Bak, Jong-Guk Lee, Jungjin and Lee, Sanghyuk 2007. Weighted restriction theorems for space curves. Journal of Mathematical Analysis and Applications, Vol. 334, Issue. 2, p. 1232.


    Drury, S. W. 1990. Degenerate curves and harmonic analysis. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 108, Issue. 01, p. 89.


    Wainger, Stephen 1989. Harmonic Analysis and Partial Differential Equations.


    Drury, S. W. and Marshall, B. P. 1987. Fourier restriction theorems for degenerate curves. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 101, Issue. 03, p. 541.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 97, Issue 1
  • January 1985, pp. 111-125

Fourier restriction theorems for curves with affine and Euclidean arclengths*

  • S. W. Drury (a1) and B. P. Marshall (a1)
  • DOI: http://dx.doi.org/10.1017/S0305004100062654
  • Published online: 24 October 2008
Abstract

Let M be a smooth manifold in . One may ask whether , the restriction of the Fourier transform of f to M makes sense for every f in . Since, for does not make sense pointwise, it is natural to introduce a measure σ on M and ask for an inequality

for every f in (say) the Schwartz class. Results of this kind are called restriction theorems. An excellent survey article on this subject is to be found in Tomas[13].

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]W. F. Donoghue Jr. Monotone Matrix Functions and Analytic Continuation (Springer-Verlag, 1974).

[3]S. W. Drury . Restrictions of Fourier transforms to curves, to appear, Annales de l'institut Fourier, 35/1 (1985).

[4]C. Fefferman . Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 936.

[9]E. Prestini . A restriction theorem for space curves. Proc. Amer. Math. Soc. 70 (1978), 810.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×