Skip to main content Accessibility help

The Ganea conjecture in proper homotopy via exterior homotopy theory


In this article we provide sufficient conditions on a space X to verify Ganea conjecture with respect to exterior and proper Lusternik–Schnirelmann category. For this aim we previously develop an exterior version of the Whitehead, cellular approximation, CW-approximation and Blakers–Massey theorems within a homotopy theory of exterior CW-complexes and study their corresponding analogues and consequences in the proper setting.

Hide All
[1]Ayala, R., Domínguez, E. and Quintero, A.A theoretical framework for proper homotopy theory. Math. Proc. Camb. Phil. Soc. 107 (1990), 475482.
[2]Ayala, R., Domínguez, E., Márquez, A. and Quintero, A.Lusternik–Schnirelmann invariants in proper homotopy theory. Pacific J. Math. 153 (1992), 201215.
[3]Ayala, R. and Quintero, A.On the Ganea strong category in proper homotopy. Proc. Edinburgh Math. Soc. 41 (1998), 247263.
[4]Baues, H. J., Foundations of proper homotopy theory. Max-Planck Institut fr Mathematik, preprint (1992).
[5]Baues, H. J. and Quintero, A.Infinite homotopy theory. K-Monographs in Mathematics 6, (Kluwer Academic Publishers, 2001).
[6]Baues, H. J. and Quintero, A.On the locally finite chain algebra of a proper homotopy type. Bull. Belg. Math. Soc. 3:(2) (1996), 161175.
[7]Brown, E. M.On the proper homotopy type of simplicial complexes. Lect. Notes in Math. 375 (1975).
[8]Cárdenas, M., Lasheras, F. F. and Quintero, A.Minimal covers of open manifolds with half-spaces and the proper L-S category of product spaces. Bull. Belgian Math. Soc. 9 (2002), 419431.
[9]Cárdenas, M., Lasheras, F. F., Muro, F. and Quintero, A.Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces. Topology Appl. 153:(4) (2005), 580604.
[10]Cárdenas, M., Muro, F. and Quintero, A.The proper L-S category of Whitehead manifolds. Topology Appl. 153:4, (2005), 557579.
[11]Cornea, O., Lupton, G., Oprea, J. and Tanré, D.Lusternik–Schnirelmann category. Math. Surveys and Monogr. 103, (Amer. Math. Soc., 2003).
[12]Doeraene, J. P.L. S.-category in a model category. J. Pure Appl. Alg. 84 (1993), 215261.
[13]Edwards, D. and Hastings, H.Čech and Steenrod homotopy theories with applications to Geometric Topology. Lect. Notes Math. 542 (Springer, 1976).
[14]Extremiana, J. I., Hernández, L. J. and Rivas, M. T.Postnikov factorizations at infinity. Topology Appl. 153 (2005), 370393.
[15]Extremiana, J. I. and Hernández, L. J. y Rivas, M. T.Proper CW-complexes: a category for the study of proper homotopy. Collect. Math., 39:(2), (1988), 149179.
[16]Farrell, F. T., Taylor, L. R. y Wagoner, J. B.The Whitehead theorem in the proper category. Compositio Math., 27 (1973),1–23.
[17]García–Calcines, J. M., García–Díaz, P. R. and Murillo–Mas, A.A Whitehead-Ganea approach for proper Lusternik–Schnirelmann category. Math. Proc. Camb. Phil. Soc. 142:(3) (2007), 439457.
[18]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.A closed model category for proper homotopy and shape theories. Bull. Austral. Math. Soc. 57:(2) (1998), 221242.
[19]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.Closed simplicial model structures for exterior and proper homotopy theory. Appl. Categ. Structures 12 (3) (2004), 225243.
[20]García–Díaz, P. R. Caracterizaciones de Whitehead y Ganea para la categoría de Lusternik-Schnirelmann propia. Tesis (Spanish), (2007).
[21]Gray, B.Homotopy Theory: An introduction to algebraic topology. Pure Appl. Math. 64 (1975).
[22]Hernández–Paricio, L. J.Application of simplicial M-sets to proper homotopy and strong shape theories. Trans. Amer. Math. Soc. 347:(2) (1995), 363409.
[23]Hernández–Paricio, L. J.Functorial and algebraic properties of Brown's functor. Theory Appl. Categ. 1:(2) (1995), 1053.
[24]Iwase, N.Ganea conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc. 30:(6) (1998), 623634.
[25]Strøm, A.The homotopy category is a homotopy category. Arch. Math. 23 (1972), 435441.
[26]Vandembroucq, L.Suspension of Ganea fibrations and a Hopf invariant. Topology Appl. 105 (2000), 187200.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed