Skip to main content
×
Home
    • Aa
    • Aa

Gaussian integer points of analytic functions in a half-plane

  • ALASTAIR FLETCHER (a1)
Abstract
Abstract

A classical result of Pólya states that 2z is the slowest growing transcendental entire function taking integer values on the non-negative integers. Langley generalised this result to show that 2z is the slowest growing transcendental function in the closed right half-plane Ω = {z : Re(z) ≥ 0} taking integer values on the non-negative integers. Let E be a subset of the Gaussian integers in the open right half-plane with positive lower density and let f be an analytic function in Ω taking values in the Gaussian integers on E. Then in this paper we prove that if f does not grow too rapidly, then f must be a polynomial. More precisely, there exists L > 0 such that if either the order of growth of f is less than 2 or the order of growth is 2 and the type is less than L, then f is a polynomial.

Copyright
References
Hide All
[1]Bank S. B. and Langley J. K.. On the value distribution theory of elliptic functions. Monatsh. Math. 98 no. 1 (1984), 120.
[2]Beardon A. F. and Minda D.. The hyperbolic metric and geometric function theory. Quasiconformal Mappings and their Applications (Narosa Publishing House, 2007).
[3]Boas R. P. Jr. Entire Functions (Academic Press Inc., 1954).
[4]Buck R. C.. Integral valued entire functions. Duke Math. J. 15 (1948), 879891.
[5]Fletcher A. and Langley J.. Integer points of analytic functions in a half-plane. Proc. Edin. Math. Soc., to appper.
[6]Gelfond A. O.. Transcendental and Algebraic Numbers (Dover Publication, 1960).
[7]Gol'dberg A. A. and Ostrovskii I. V.. Distribution of values of meromorphic functions (Nauka, 1970).
[8]Langley J. K.. Integer points of meromorphic functions. Comput. Methods Funct. Theory 5 (2005), 253262.
[9]Langley J. K.. Integer points of entire functions. Bullet. London Math. Soc. 38 (2006), 239249.
[10]Langley J. K.. Integer-valued analytic functions in a half-plane. Comput. Methods Funct. Theory 7 (2007), 433442.
[11]Pólya G.. Über ganze ganzwertige Funktionen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (1921), 1–10.
[12]Robinson R. P.. Integer-valued entire functions. Trans. Amer. Math. Soc. 153 (1971), 451468.
[13]Waldschmidt M.. Integer valued entire functions on Cartesian products. Number Theory in Progress, Vol. 1 (Zakopane-Koscielisko 1997), 553–576 (de Gruyter, 1999).
[14]Welter M.. A new class of integer-valued entire functions. J. Reine Angew. Math. 583 (2005), 175192.
[15]Whittaker J. M.. Interpolatory Function Theory (Cambridge Tract No. 33, Cambridge University Press, 1935).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 45 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.