Skip to main content
×
Home
    • Aa
    • Aa

Generalised Cogrowth series, random walks, and the group determinant

  • STEPHEN P. HUMPHRIES (a1)
Abstract

We associate to a group G a series that generalises the cogrowth series of G and is related to a random walk on G. We show that the series is rational if and only if G is finite, generalizing a result of Kouksov [Kou]. We show that when G is finite, the series determines G. There are naturally occurring ideals and varieties that are acted on by Aut(G). We study these and generalize this to the context of S-rings over finite groups. There is an associated representation of Aut(G) and we characterize when this is irreducible.

Copyright
References
Hide All
[AL] AdamsWilliam W. and LoustaunauPhilippe. An introduction to Gröbner bases. Graduate Studies in Mathematics 3 (American Mathematical Society, Providence 1994).
[AM] Atiyah M. F. and Macdonald I. G. Introduction to Commutative Algebra (Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969), ix+128 pp.
[Ber] Bergeron F. Algebraic combinatorics and coinvariant spaces. CMS Treatises in Mathematics. Canadian Mathematical Society, Ottawa, ON (A K Peters, Ltd., Wellesley, MA, 2009), viii+221.
[Bou] Bourbaki N. Elements of Mathematics: Algebra I (Addison-Wesley, 1974).
[Br] Brauer R. Representations of finite groups. Lectures in Modern Mathematics, vol. I, Editor Saaty T. L. (Wiley, New York, 1963), 133175.
[Cur] Curtis C. W. Pioneers of representation theory: Frobenius, Burnside, Schur and Brauer. History of Mathematics 15 (American Mathematical Society, Providence, RI; London Mathematical Society, London, 1999), 287 pages.
[FS] Formanek E. and Sibley D. The group determinant determines the group. Proc. Amer. Math. Soc. 112 (1991), 649656.
[Fr] Frobenius F.G. Über vertauschbare Matrizen. S'ber. Akad. Wiss. Berlin (1896), 601614.
[Ge] Gerstenhaber M. On nilalgebras and linear varieties of nilpotent matrices. III. Ann. of Math. (2) 70 (1959) 167205.
[G] Göbel M. Computing bases for rings of permutation-invariant polynomials. J. Symbolic Comput. 19 (1995), no. 4, 285291.
[Gr] Grigorchuk R. I. Symmetrical random walks on discrete groups . Multicomponent random systems, pp. 285-325. Adv. Probab. Related Topics, 6 (Dekker, New York, 1980).
[GB] Grove L. C. and Benson C. T. Finite reflection groups. Second edition. Graduate Texts in Mathematics, 99 (Springer-Verlag, New York, 1985). x+133 pp.
[HoJ] Hoehnke H.-J. and Johnson K. W.. 3-characters are sufficient for the group determinant. Second International Conference on Algebra (Barnaul, 1991)), 193–206. Contemp. Math. 184 (Amer. Math. Soc., Providence, RI, 1995).
[Hul] Hulek K. Elementary algebraic geometry. Translated from the 2000 German original by Helena Verrill. Student Mathematical Library, 20 (American Mathematical Society, Providence, RI, 2003). viii+213 pp.
[Hu] Humphries S. P. Cogrowth of groups and the Dedekind–Frobenius group determinant. Math. Proc. Camb. Phil. Soc. 121 (1997), 193217.
[HR] Humphries S. P. and Rode E. L. Weak Cayley tables and generalised centraliser rings of finite groups. To appear in Math Proc. Camb. Phil. Soc. (2012).
[HJM] Humphries S. P., Johnson K. W. and Misseldine A. Commutative S-rings of maximal dimension, preprint (2013).
[Isa] Isaacs I. M. Finite group theory. Graduate Studies in Mathematics, 92 (American Mathematical Society, Providence, RI, 2008). xii+350 pp.
[Ja] Jantzen J. C. Nilpotent orbits in representation theory. Lie theory, 1-211. Progr. Math. 228 (Birkhuser Boston, Boston, MA, 2004).
[J] Johnson K. W. On the group determinant. Math. Proc. Camb. Phil. Soc. 109 (1991), 299311.
[Ke] Keller J. Representations associated to the group matrix. MS thesis. Brigham Young University (2014), 45 pages.
[Kou] Kouksov D. On rationality of the cogrowth series. Proc. Amer. Math. Soc. 126 (1998), 28452847.
[L] Lam T. Y. Representations of finite groups: a hundred years. I. Not. Amer. Math. Soc. 45 (1998), no. 3, 361372.
[Mac] Macdonald I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. (The Clarendon Press, Oxford University Press, New York, 1995).
[MA] Bosma W. and Cannon J. MAGMA (University of Sydney, 1994).
[Man] Mansfield R. A group determinant determines its group. Proc. Amer. Math. Soc. 116 (1992), 939941.
[Mil] Milnor J. Singular points of complex hypersurfaces. Annals of Math. Stud., No. 61 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1968), iii+122 pp.
[OV] Okounkov A. and Vershik A. A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2 (1996), no. 4, 581605.
[Rod] Rode E. The 3-S-ring determines a finite group. Preprint (2012).
[R] Roggenkamp K. W. From Dedekind's group determinant to the isomorphism problem. C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), 97126.
[Sch] Schur I. Zur Theorie der einfach transitiven Permutationsgruppen. Sitz. Preuss. Akad. Wiss. Berlin, Phys-math Klasse (1933), 598623.
[Sc] Scott W. R. Group theory (Dover, 1987).
[Sk] Skrzyński M. On basic geometric properties of the cones of nilpotent matrices. Univ. Iagel. Acta Math. No. 33 (1996), 219228.
[St1] Stanley R. P. Hilbert functions of graded algebras. Advances in Math. 28 (1978), no. 1, 5783.
[St2] Stanley R. P. Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475511.
[St] Sturmfels B. Algorithms in invariant theory. Second edition. Texts and Monographs in Symbolic Computation. (Springer Wien New York, Vienna, 2008), vi+197 p.
[VZ] Vyshnevetskiy A. L. and Zhmud E. M. Random walks on finite groups converging after finite number of steps. Algebra Discrete Math. (2008), no. 2, 123129.
[Wie] Helmut W. Zur theorie der einfach transitiven permutationsgruppen II. Math. Z. 52 (1949), 384393.
[Wo] Woess W. Cogrowth of groups and simple random walks. Arch. Math. (Basel) 41 (1983), no. 4, 363370.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between 14th August 2017 - 20th October 2017. This data will be updated every 24 hours.