Skip to main content
    • Aa
    • Aa

The geometry of conformal measures for parabolic rational maps

  • B. O. STRATMANN (a1) and M. URBAŃSKI (a2)
    • Published online: 01 January 2000

We study the h-conformal measure for parabolic rational maps, where h denotes the Hausdorff dimension of the associated Julia sets. We derive a formula which describes in a uniform way the scaling of this measure at arbitrary elements of the Julia set. Furthermore, we establish the Khintchine Limit Law for parabolic rational maps (the analogue of the ‘logarithmic law for geodesics’ in the theory of Kleinian groups) and show that this law provides some efficient control for the fluctuation of the h-conformal measure. We then show that these results lead to some refinements of the description of this measure in terms of Hausdorff and packing measures with respect to some gauge functions. Also, we derive a simple proof of the fact that the Julia set of a parabolic rational map is uniformly perfect. Finally, we obtain that the conformal measure is a regular doubling measure, we show that its Renyi dimension and its information dimension are equal to h and we compute its logarithmic index.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.