Skip to main content

Hollow quasi-Fatou components of quasiregular maps


We define a quasi-Fatou component of a quasiregular map as a connected component of the complement of the Julia set. A domain in ℝ d is called hollow if it has a bounded complementary component. We show that for each d ⩾ 2 there exists a quasiregular map of transcendental type f: ℝ d → ℝ d with a quasi-Fatou component which is hollow.

Suppose that U is a hollow quasi-Fatou component of a quasiregular map of transcendental type. We show that if U is bounded, then U has many properties in common with a multiply connected Fatou component of a transcendental entire function. On the other hand, we show that if U is not bounded, then it is completely invariant and has no unbounded boundary components. We show that this situation occurs if J(f) has an isolated point, or if J(f) is not equal to the boundary of the fast escaping set. Finally, we deduce that if J(f) has a bounded component, then all components of J(f) are bounded.

Hide All
[1] Baker I. N. Multiply connected domains of normality in iteration theory. Math. Z. 81 (1963), 206214.
[2] Baker I. N. An entire function which has wandering domains. J. Austral. Math. Soc. Ser. A 22 2 (1976), 173176.
[3] Baker I. N. Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3) 49 3 (1984), 563576.
[4] Bergweiler W. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 2 (1993), 151188.
[5] Bergweiler W. Fixed points of composite entire and quasiregular maps. Ann. Acad. Sci. Fenn. Math. 31 2 (2006), 523540.
[6] Bergweiler W. Fatou-Julia theory for non-uniformly quasiregular maps. Ergodic Theory Dynam. Systems 33 1 (2013), 123.
[7] Bergweiler W., Drasin D. and Fletcher A. The fast escaping set for quasiregular mappings. Anal. Math. Phys. 4 1–2 (2014), 8398.
[8] Bergweiler W., Fletcher A., Langley J. and Meyer J. The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc. 137 2 (2009), 641651.
[9] Bergweiler W., Fletcher A. and Nicks D. A. The Julia set and the fast escaping set of a quasiregular mapping. Comput. Methods Funct. Theory 14 2–3 (2014), 209218.
[10] Bergweiler W. and Nicks D. A. Foundations for an iteration theory of entire quasiregular maps. Israel J. Math. 201 1 (2014), 147184.
[11] Bergweiler W., Rippon P. J. and Stallard G. M. Multiply connected wandering domains of entire functions. Proc. Lond. Math. Soc. (3) 107 6 (2013), 12611301.
[12] Drasin D. and Sastry S. Periodic quasiregular mappings of finite order. Rev. Mat. Iberoamericana. 19 3 (2003), 755766.
[13] Eremenko A. E. On the iteration of entire functions. Dynamical systems and ergodic theory (Warsaw 1986). 23 (1989), 339345.
[14] García-Máynez A. and Illanes A. A survey on unicoherence and related properties. An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 1767.
[15] Järvi P. On the zeros and growth of quasiregular mappings. J. Anal. Math. 82 (2000), 347362.
[16] Kuratowski K. Topology, Vol. II. Translated from the French by Kirkor A. (Academic Press, New York-London; PWN Polish Scientific Publishers, Warsaw, 1968).
[17] Nadler S. B. Jr., Continuum theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 158 (Marcel Dekker, Inc., New York, 1992).
[18] Napier T. and Ramachandran M. An Introduction to Riemann Surfaces. Cornerstones (Birkhäuser/Springer, New York, 2011).
[19] Nicks D. A. and Sixsmith D. J. The size and topology of quasi-Fatou components of quasiregular maps. To appear in Proc. Amer. Math. Soc. arXiv:1601.03308.
[20] Rickman S. Quasiregular mappings. Ergeb. Math. Grenzgeb. (3), vol. 26 (Springer-Verlag, Berlin, 1993).
[21] Rippon P. J. and Stallard G. M. Fast escaping points of entire functions. Proc. London Math. Soc. (3) 105 4 (2012), 787820.
[22] Sixsmith D. J. Entire functions for which the escaping set is a spider's web. Math. Proc. Camb. Phil. Soc. 151 3 (2011), 551571.
[23] Sixsmith D. J. On fundamental loops and the fast escaping set. J. Lond. Math. Soc. (2) 88 3 (2013), 716736.
[24] Töpfer H. Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin z und cos z . Math. Ann. 117 (1939), 6584.
[25] Vuorinen M. Conformal geometry and quasiregular mappings. Lecture Notes in Math., vol. 1319 (Springer-Verlag, Berlin, 1988).
[26] Zheng J.-H. On multiply-connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl. 313 1 (2006), 2437.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 178 *
Loading metrics...

* Views captured on Cambridge Core between 23rd September 2016 - 23rd January 2018. This data will be updated every 24 hours.