[1]
Baker I. N.
Multiply connected domains of normality in iteration theory. Math. Z.
81 (1963), 206–214.

[2]
Baker I. N.
An entire function which has wandering domains. J. Austral. Math. Soc. Ser. A
22
2 (1976), 173–176.

[3]
Baker I. N.
Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3)
49
3 (1984), 563–576.

[4]
Bergweiler W.
Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.)
29
2 (1993), 151–188.

[5]
Bergweiler W.
Fixed points of composite entire and quasiregular maps. Ann. Acad. Sci. Fenn. Math.
31
2 (2006), 523–540.

[6]
Bergweiler W.
Fatou-Julia theory for non-uniformly quasiregular maps. Ergodic Theory Dynam. Systems
33
1 (2013), 1–23.

[7]
Bergweiler W., Drasin D. and Fletcher A.
The fast escaping set for quasiregular mappings. Anal. Math. Phys.
4
1–2 (2014), 83–98.

[8]
Bergweiler W., Fletcher A., Langley J. and Meyer J.
The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc.
137
2 (2009), 641–651.

[9]
Bergweiler W., Fletcher A. and Nicks D. A.
The Julia set and the fast escaping set of a quasiregular mapping. Comput. Methods Funct. Theory
14
2–3 (2014), 209–218.

[10]
Bergweiler W. and Nicks D. A.
Foundations for an iteration theory of entire quasiregular maps. Israel J. Math.
201
1 (2014), 147–184.

[11]
Bergweiler W., Rippon P. J. and Stallard G. M.
Multiply connected wandering domains of entire functions. Proc. Lond. Math. Soc. (3)
107 6 (2013), 1261–1301.

[12]
Drasin D. and Sastry S.
Periodic quasiregular mappings of finite order. Rev. Mat. Iberoamericana.
19
3 (2003), 755–766.

[13]
Eremenko A. E.
On the iteration of entire functions. Dynamical systems and ergodic theory (Warsaw 1986). 23 (1989), 339–345.

[14]
García-Máynez A. and Illanes A.
A survey on unicoherence and related properties. An. Inst. Mat. Univ. Nac. Autónoma México
29 (1989), 17–67.

[15]
Järvi P.
On the zeros and growth of quasiregular mappings. J. Anal. Math.
82 (2000), 347–362.

[16]
Kuratowski K.
Topology, Vol. II. Translated from the French by Kirkor A. (Academic Press, New York-London; PWN Polish Scientific Publishers, Warsaw, 1968).

[17]
Nadler S. B. Jr., Continuum theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 158 (Marcel Dekker, Inc., New York, 1992).

[18]
Napier T. and Ramachandran M.
An Introduction to Riemann Surfaces. Cornerstones (Birkhäuser/Springer, New York, 2011).

[19]
Nicks D. A. and Sixsmith D. J. The size and topology of quasi-Fatou components of quasiregular maps. To appear in *Proc. Amer. Math. Soc.* arXiv:1601.03308.

[20]
Rickman S.
Quasiregular mappings. Ergeb. Math. Grenzgeb. (3), vol. 26 (Springer-Verlag, Berlin, 1993).

[21]
Rippon P. J. and Stallard G. M.
Fast escaping points of entire functions. Proc. London Math. Soc. (3)
105
4 (2012), 787–820.

[22]
Sixsmith D. J.
Entire functions for which the escaping set is a spider's web. Math. Proc. Camb. Phil. Soc.
151
3 (2011), 551–571.

[23]
Sixsmith D. J.
On fundamental loops and the fast escaping set. J. Lond. Math. Soc. (2)
88
3 (2013), 716–736.

[24]
Töpfer H.
Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin *z* und cos *z*
. Math. Ann.
117 (1939), 65–84.

[25]
Vuorinen M.
Conformal geometry and quasiregular mappings. Lecture Notes in Math., vol. 1319 (Springer-Verlag, Berlin, 1988).

[26]
Zheng J.-H.
On multiply-connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl.
313
1 (2006), 24–37.