Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T09:56:38.997Z Has data issue: false hasContentIssue false

Infinitely many ribbon knots with the same fundamental group

Published online by Cambridge University Press:  24 October 2008

Alexander I. Suciu
Affiliation:
Department of Mathematics, Yale University, New Haven, CT 06520

Extract

We work in the DIFF category. A knot K = (Sn+2, Sn) is a ribbon knot if Sn bounds an immersed disc Dn+1Sn+2 with no triple points and such that the components of the singular set are n-discs whose boundary (n – l)-spheres either lie on Sn or are disjoint from Sn. Pushing Dn+1 into Dn+3 produces a ribbon disc pair D = (Dn+3, Dn+1), with the ribbon knot (Sn+2, Sn) on its boundary. The double of a ribbon (n+1)-disc pair is an (n + l)-ribbon knot. Every (n+l)-ribbon knot is obtained in this manner.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andrews, J. J. and Curtis, M. L.. Free groups and handlebodies. Proc. Amer. Math. Soc. 16 (1965), 192195.Google Scholar
[2]Andrews, J. J. and J, S.. Lomonaco, Jr. The second homotopy group of spun 2-spheres in 4-space. Ann. of Math. 90 (1969), 199204.CrossRefGoogle Scholar
[3]Andrews, J. J. and Sumners, D. W.. On higher-dimensional fibered knots. Trans. Amer. Math. Soc. 153 (1971), 415426.CrossRefGoogle Scholar
[4]Asano, K., Marumoto, Y. and Yanagawa, T.. Ribbon knots and ribbon disks. Osaka J. Math. 18 (1981), 161174.Google Scholar
[5]Brown, K. S.. Cohomology of groups (Springer-Verlag, 1982).CrossRefGoogle Scholar
[6]Cappell, S. E.. Superspinning and knot complements. In Topology of Manifolds (Markham, 1970), pp. 358383.Google Scholar
[7]Fox, R. H.. A quick trip through knot theory. In Topology of 3-Manifolds and Related Topics (Prentice Hall, 1962), pp. 120167.Google Scholar
[8]Gluck, H.. The embedding of two-spheres in the four-sphere. Trans. Amer. Math. Soc. 104 (1978), 308333.CrossRefGoogle Scholar
[9]McA, C.. Gordon. Some higher-dimensional knots with the same homotopy groups. Quart. J. Math. Oxford 24 (1973), 411422.Google Scholar
[10]McA, C.. Gordon. A note on spun knots. Proc. Amer. Math. Soc. 58 (1976), 361362.Google Scholar
[11]McA, C.. Gordon. Some aspects of classical knot theory. In Knot Theory (Plans-sur-Bex, 1977), Lecture Notes in Math. 685 (Springer-Verlag, 1978), pp. 160.Google Scholar
[12]McA, C.. Gordon. Ribbon concordance of knots in the 3-sphere. Math. Ann. 257 (1981), 157170.Google Scholar
[13]Hitt, L. R.. Handlebody presentations of knot cobordisms, Ph.D. Dissertation, Florida State Univ., 1977.Google Scholar
[14]Hitt, L. R. and Sumners, D. W.. Many different disk knots with the same exterior. Comment. Math. Helvetici 56 (1981), 142147.CrossRefGoogle Scholar
[15]Hitt, L. R. and Sumners, D. W.. There exist arbitrarily many different disk knots with the same exterior. Proc. Amer. Math. Soc. 86 (1982), 148150.CrossRefGoogle Scholar
[16]Hudson, J. F. P. and Sumners, D. W.. Knotted ball pairs in unknotted sphere pairs. J. London Math. Soc. 41 (1966), 717722.CrossRefGoogle Scholar
[17]Laudenbach, F. and Poenaru, V.. A note on 4-dimensional handlebodies. Bull. Soc. Math. France 100 (1972), 337344.CrossRefGoogle Scholar
[18]Levine, J.. Knot modules. I. Trans. Amer. Math. Soc. 229 (1977), 150.CrossRefGoogle Scholar
[19]Lomonaco, S. J. JrThe second homotopy group of a spun knot. Topology 8 (1969), 9598.CrossRefGoogle Scholar
[20]Lomonaco, S. J. JrThe homotopy groups of knots. I. How to compute the algebraic 2-type. Pacific J. Math. 95 (1981), 349390.CrossRefGoogle Scholar
[21]Lyndon, R. C.. Cohomology theory of groups with a single defining relation. Ann. of Math. 52 (1950), 650665.CrossRefGoogle Scholar
[22]Papakybiakopoulos, C. D.. On Dehn's lemma and the asphericity of knots. Ann. of Math. 66 (1957), 126.CrossRefGoogle Scholar
[23]Piotnick, S. P.. The homotopy type of four-dimensional knot complements. Math. Zeit. 183 (1983), 447471.CrossRefGoogle Scholar
[24]Plotnick, S. P.. Infinitely many disc knots with the same exterior. Math. Proc. Cambridge Philos. Soc. 93 (1983), 6772.CrossRefGoogle Scholar
[25]Plotnick, S. P. and Suciu, A. I.. k-invariants of knotted 2-spheres. Comment. Math. Helvetici 60 (1985), 5484.Google Scholar
[26]Schreier, O.. Über die Gruppen Aa = 1. Abh. Math. Sem. Hamburg 3 (1923), 167169.CrossRefGoogle Scholar
[27]Whitehead, J. H. C.. On incidence matrices, nuclei and homotopy types. Ann. of Math. 42 (1941), 11971239.CrossRefGoogle Scholar
[28]Yajima, T.. On simply knotted spheres in ℝ4. Osaka J. Math. 1 (1964), 133152.Google Scholar
[29]Yajima, T.. On a characterization of knot groups of spheres in ℝ4. Osaka J. Math. 6 (1969), 435446.Google Scholar