Skip to main content

Invariance principles for logarithmic averages

  • Miklós Csörgő (a1) and Lajos Horváth (a2)

We obtain weak and strong Gaussian approximations for logarithmic averages of indicators of normalized partial sums. The proofs are based on invariance principles for integrals of an Ornstein–Uhlenbeck process and on strong approximations of normalized partial sums by Orstein–Uhlenbeck processes.

Hide All
[1]Baxter J. R. and Brosamler G. A.. Energy and the law of the iterated logarithm. Math. Scand. 38 (1976), 115136.
[2]Bickel P. J. and Wichura M. J.. Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 16561670.
[3]Billingsley P.. Convergence of Probability Measures (Wiley, 1968).
[4]Bingham N. H. and Doney R. A.. On higher-dimensional analogues of the arc-sine law. J. Appl. Probab. 25 (1988), 120131.
[5]Bingham N. H. and Rogers L. C. G.. Summability methods and almost-sure convergence. In Almost Everywhere Convergence II (Academic Press, 1991), pp. 6983.
[6]Brosamler G. A.. The asymptotic behaviour of certain additive functionals of Brownian motion. Invent. Math. 20 (1973), 8796.
[7]Brosamler G. A.. An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc. 104 (1988), 561574.
[8]Brosamler G. A.. A simultaneous almost everywhere central limit theorem for diffusions and its application to path energy and eigenvalues of the Laplacian. Illinois J. Math. 34 (1990), 526556.
[9]Chung K.-L. and Erdős P.. Probability Limit Theorems Assuming only the First Moment. Memoirs Amer. Math. Soc. no. 6 (American Mathematical Society, 1951).
[10]Csörgő M. and Révész P.. Strong Approximations in Probability and Statistics. (Academic Press, 1981).
[11]Einmahl U.. Strong invariance principles for partial sums of independent random vectors. Ann. Probab. 15 (1987), 14191440.
[12]Fernique X.. Régularité des trajectoires desjonctions. École d'Été de Probabilités de Saint-Flour IV-1974. Lecture Notes in Math. vol. 480 (Springer-Verlag, 1975).
[13]Kolmogorov A. N. and Fomin S. V.. Introductory Real Analysis (Prentice-Hall, 1970).
[14]Komlós J., Major P. and Tusnády G.. An approximation of partial sums of independent RVs and the sample DF, I. Z. Wahrsch. Verw. Gebiete 32 (1975), 111131.
[15]Komlós J., Major P. and Tusnády G.. An approximation of partial sums of independent RVs and the sample DF, II. Z. Wahrsch. Verw. Gebiete 34 (1976), 3358.
[16]Lacey M. T. and Philipp W.. A note on the almost sure central limit theorem. Statist. Probab. Lett. 9 (1990), 201205.
[17]Lévy P.. Thérie de l'Addition des Variables Aleatoires (Gauthier-Villars, 1937).
[18]Mandl P.. Analytical Treatment of One-Dimensional Markov Processes (Springer, 1968).
[19]Peligrad M. and Révész P.. On the almost-sure central limit theorem. In Almost Everywhere Convergence II (Academic Press, 1991), pp. 209225.
[20]Révész P.. Random Walk in Random and Non-Random Environments (World Scientific Publishing Co., 1990).
[21]Schatte P.. On strong versions of the central limit theorem. Math. Nachr. 137 (1988), 249256.
[22]Weigl A.. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, Technische Universität, Vienna (1989).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 29 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.