[1]Arrow, K. J. and Hahn, F. H.. General Competitive Analysis. Holden-Day (1971).
[2]Artstein, Z. and Vitale, R. A.. A strong law of large numbers for random compact sets. Ann. Prob. 3 (1975), 879–882.
[3]Aumann, R. J.. Integrals of set-valued functions. J. Math. Analysis Applic. 12 (1965), 1–12.
[4]Billingsley, P.. Convergence of Probability Measures. Wiley (1968).
[5]Byrne, C. L.. Remarks on the set-valued integrals of Debreu and Aumann. J. Math. Anal. Appl. 62 (1978), 243–246.
[6]Cassels, J. W. S.. Measures of the non-convexity of sets and the Shapley-Folkman-Starr theorem. Math. Proc. Cambridge Philos. Soc. 78 (1975), 433–436.
[7]Chung, K. L.. A Course in Probability Theory. Academic Press (1974).
[8]Ceessie, N.. A strong limit theorem for random sets. Suppl. Adv. Appl. Prob. 10 (1978), 36–46.
[9]Cressie, N.. A central limit theorem for random sets. Z. Wahrsch. Verw. Gebiete 49 (1979), 37–47.
[10]Debreu, G.. Integration of correspondences. Proc. Fifth Berkeley Symp. Math. Statist. Probability 2, 351–372. University of California Press (1966).
[11]Dunford, N. and Schwartz, J. T.. Linear Operators, part I. Interscience (1958).
[12]Giné, E., Hahn, M. G. and Zinn, J.. Limit theorems for random sets: an application of probability in Banach space results. Proc. Fourth Int. Conf. on Prob. in Banach Space, Oberwolfach, Springer Lecture Notes in Math. 990 (1983), 112–135.
[13]Hermes, H.. Calculus of set-valued functions and control. J. Math. Mech. 18 (1968), 47–59.
[14]Hess, C.. Théorème ergodique et loi forte des grands nombres pour des ensembles aleatoires. G. R. Acad. Sci. Paris, Ser. A 288 (1979), 519–522.
[15]Hörmander, L.. Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Ark. Mat. 3 (1954), 181–186.
[16]Jain, N. C. and Marcus, M. B.. Central limit theorem for C(S)-valued random variables. J. Fund. Anal. 19 (1975), 216–231.
[17]Kendall, D. G.. Foundations of a theory of random sets. In Stochastic Geometry (ed. Harding, E. F. and Kendall, D. G.). Wiley (1974).
[18]Kendall, M. G. and Moran, P. A. P.. Geometrical Probability. Griffin (1963).
[19]Lyashenko, N. N.. On limit theorems for sums of independent compact random subsets in the Euclidean space. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 85 (1979), 113–128 (in Russian).
[20]Mase, S.. Random convex sets which are infinitely divisible with respect to Minkowski addition. Adv. Appl. Prob. 11 (1979), 834–850.
[21]Matheron, G.. Bandom Sets and Integral Geometry. Wiley (1975).
[22]Puri, M. L. and Ralescu, D. A.. Strong law of large numbers for Banach space valued random sets. Ann. Probab. 11 (1983), 222–224.
[23]Rådström, H.. An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3 (1952), 165–169.
[24]Ripley, B. D.. The foundations of stochastic geometry. Ann. Probab. 4 (1976), 995–998.
[25]Robbins, H. E.. On the measure of a random set. Ann. Math. Statist. 14 (1944), 70–74.
[26]Robbins, H. E.. On the measure of arandom set, II. Ann. Math. Statist. 15 (1945), 342–347.
[27]Rudin, W.. Functional Analysis. McGraw-Hill (1973).
[28]Starr, R.. Quasi-equilibria in markets with nonconvex preferences. Econometrica 37 (1969), 25–38.
[29]Weil, W.. An application of the central limit theorem for Banach space-valued random variables to the theory of random sets. Z. Wahrsch. Verw. Gebiete 60 (1982), 203–208.