Skip to main content
×
×
Home

Local rigidity of complex hyperbolic lattices in semisimple Lie groups

  • INKANG KIM (a1) and GENKAI ZHANG (a2)
Abstract

We show the local rigidity of complex hyperbolic lattices in classical Hermitian semisimple Lie groups, SU(p, q), Sp(2n + 2, $\mathbb{R}$ ), SO*(2n + 2), SO(2n, 2). This reproves or generalises some results in [2, 9, 11, 15].

Copyright
References
Hide All
[1] Eastwood, M. and Wolf, J. Branching of representations to symmetric subgroups. Münster J. Math. 4 (2011), 127.
[2] Goldman, W. and Millson, J. Local rigidity of discrete groups acting on complex hyperbolic space. Inv. Math. 88 (1987), 495520.
[3] Helgason, S. Differential Geometry, Lie groups and Symmetric spaces (Academic press, New York, 1978).
[4] Howe, R. θ-series and invariant theory. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 275–285, Proc. Sympos. Pure Math., XXXIII (Amer. Math. Soc., Providence, R.I., 1979).
[5] Humphreys, J. Introduction to Lie Algebras and Representation Theory (Springer-Verlag, New York, 1972).
[6] Ihara, S. Holomorphic embeddings of symmetric domains. J. Math. Soc. Japan 19, no.3 (1967).
[7] Johnson, K. D. Composition series and intertwining operators for the spherical principal series. II. Trans. Amer. Math. Soc. 215 (1976), 269283.
[8] Kim, I. and Pansu, P. Local Rigidity in quaternionic hyperbolic space. J. European Math Society 11 (2009), no 6, 11411164.
[9] Kim, I., Klingler, B. and Pansu, P. Local quaternionic rigidity for complex hyperbolic lattices. J. Inst. Math. Jussieu 11 (2012), no 1, 133159.
[10] Kim, I. and Zhang, G. Eichler–Shimura isomorphism for complex hyperbolic lattices, submitted.
[11] Klingler, B. Local rigidity for complex hyperbolic lattices and Hodge theory. Invent. Math. 184 (2011), no.3, 455498.
[12] Koziarz, V. and Maubon, J. Maximal representations of uniform complex hyperbolic lattices, preprint.
[13] Matsushima, Y. and Murakami, S. On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. Math. 78 (1963), 329416.
[14] Matsushima, Y. and Murakami, S. On certain cohomology groups attached to Hermitian symmetric spaces. Osaka J. Math. 2 (1965), 135.
[15] Pozzetti, M. B. Maximal representations of complex hyperbolic lattices in SU(m,n). Geom. Funct. Anal. 25 (2015), 12901332.
[16] Raghunathan, M. S. On the first cohomology of discrete subgroups of semisimple Lie groups. Amer. J. Math. 87 (1965), 103139.
[17] Raghunathan, M. S. Discrete subgroups of Lie groups (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[18] Satake, I. Holomorphic embeddings of symmetric domains into a Siegel domains. Amer. J. Math. 87, no.2 (1965).
[19] Weil, A. Discrete subgroups of Lie groups, II. Ann. of Math 75 (1962), 97123.
[20] Zucker, S. Locally homogeneous variations of Hodge structure. Enseign. Math. (2) 27 (1982), 243276.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 126 *
Loading metrics...

* Views captured on Cambridge Core between 29th June 2017 - 18th August 2018. This data will be updated every 24 hours.