Skip to main content Accessibility help

Local rings with quasi-decomposable maximal ideal



Let (R, 𝔪) be a commutative noetherian local ring. In this paper, we prove that if 𝔪 is decomposable, then for any finitely generated R-module M of infinite projective dimension 𝔪 is a direct summand of (a direct sum of) syzygies of M. Applying this result to the case where 𝔪 is quasi-decomposable, we obtain several classifications of subcategories, including a complete classification of the thick subcategories of the singularity category of R.



Hide All

Partly supported by JSPS Grants-in-Aid for Scientific Research 16K05098.



Hide All
[1] Auslander, M. and Buchweitz, R.-O. The homological theory of maximal Cohen–Macaulay approximations. Mém. Soc. Math. France (N.S.), No. 38 (1989), 5–37.
[2] Avramov, L. L., Iyengar, S. B., Nasseh, S. and Sather–Wagstaff, S. Persistence of homology over commutative noetherian rings, in preparation.
[3] Bruns, W. and Herzog, J. Cohen–Macaulay rings, revised edition. Camb. Stud. in Adv. Math. 39 (Cambridge University Press, Cambridge, 1998).
[4] Buchweitz, R.-O. Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings. Unpublished paper written in 1986, available at 1807/16682.
[5] Christensen, L. W., Striuli, J. and Veliche, O. Growth in the minimal injective resolution of a local ring. J. Lond. Math. Soc. (2) 81 (2010), no. 1, 2444.
[6] Dao, H. and Takahashi, R. Classification of resolving subcategories and grade consistent functions. Int. Math. Res. Not. IMRN (2015) no. 1, 119149.
[7] Dress, A. and Krämer, H. Bettireihen von Faserprodukten lokaler Ringe Math. Ann. 215 (1975), 7982.
[8] Fossum, R., Foxby, H.-B., Griffith, P. and Reiten, I. Minimal injective resolutions with applications to dualising modules and Gorenstein modules. Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193215.
[9] Goto, S., Takahashi, R. and Taniguchi, N. Almost Gorenstein rings - towards a theory of higher dimension J. Pure Appl. Algebra 219 (2015), no. 7, 26662712.
[10] Huneke, C. and Watanabe, K.-I. Upper bound of multiplicity of F-pure rings. Proc. Amer. Math. Soc. 143 (2015), no. 12, 50215026.
[11] Krause, H. and Stevenson, G. A note on thick subcategories of stable derived categories. Nagoya Math. J. 212 (2013), 8796.
[12] Matsui, H. and Takahashi, R. Singularity categories and singular equivalences for resolving subcategories. Math. Z. 285 (2017), no. 1–2, 251286.
[13] Matsumura, H. Commutative ring theory. Translated from the Japanese by Reid, M., Second edition. Camb. Stud. in Adv. Math. 8, (Cambridge University Press, Cambridge, 1989).
[14] Matsuoka, N. The defining ideal of an almost Gorenstein numerical semigroup ring. In preparation.
[15] Moore, W. F. Cohomology over fiber products of local rings. J. Algebra 321 (2009), no. 3, 758773.
[16] Nasseh, S. and Sather–Wagstaff, S. Vanishing of Ext and Tor over fiber products. Proc. Amer. Math. Soc. 145 (2017), no. 11, 46614674.
[17] Ogoma, T. Existence of dualizing complexes. J. Math. Kyoto Univ. 24 (1984), no. 1, 2748.
[18] Orlov, D. O. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proc. Steklov Inst. Math. 246 (2004), no. 3, 227248.
[19] Schoutens, H. Projective dimension and the singular locus. Comm. Algebra 31 (2003), no. 1, 217239.
[20] Takahashi, R. Classifying thick subcategories of the stable category of Cohen–Macaulay modules. Adv. Math. 225 (2010), no. 4, 20762116.
[21] Takahashi, R. Classifying resolving subcategories over a Cohen–Macaulay local ring. Math. Z. 273 (2013), no. 1–2, 569587.
[22] Takahashi, R. Thick subcategories over Gorenstein local rings that are locally hypersurfaces on the punctured spectra. J. Math. Soc. Japan 65 (2013), no. 2, 357374.

Local rings with quasi-decomposable maximal ideal



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed