Skip to main content
×
Home
    • Aa
    • Aa

Lorentzian manifolds with no null conjugate points

  • MANUEL GUTIÉRREZ (a1), FRANCISCO J. PALOMO (a1) (a2) and ALFONSO ROMERO (a3)
Abstract

An integral inequality for a compact Lorentzian manifold which admits a timelike conformal vector field and has no conjugate points along its null geodesics is given. Moreover, equality holds if and only if the manifold has nonpositive constant sectional curvature. The inequality can be improved if the timelike vector field is assumed to be Killing and, in this case, the equality characterizes (up to a finite covering) flat Lorentzian $n(\geq3)$-dimensional tori. As an indirect application of our technique, it is proved that a Lorentzian $2-$torus with no conjugate points along its timelike geodesics and admitting a timelike Killing vector field must be flat.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 44 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2017. This data will be updated every 24 hours.