[1] Barceló, J. A. and Carbery, A. On the magnitudes of compact sets in Euclidean spaces. *Amer. J. Math.*, in press (2015).

[2] Chuang, J., King, A. and Leinster, T. On the magnitude of a finite dimensional algebra. Theory Appl. Categ. 31 (2016), 63–72.

[3] Gimperlein, H. and Goffeng, M. On the magnitude function of domains in Euclidean space. arXiv:1706.06839 (2017).

[4] Godsil, C. and Royle, G. Algebraic Graph Theory (Springer, New York, 2001).

[5] Hepworth, R. and Willerton, S. Categorifying the magnitude of a graph. Homology, Homotopy Appl. 19 (2017), 31–60.

[6] Kelly, G. M. Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series. vol. 64 (Cambridge University Press, Cambridge, 1982). Also *Reprints in Theory and Applications of Categories* **10** (2005), 1–136.

[7] Khovanov, M. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), 359–426.

[8] Klain, D. A. and Rota, G.–C.. Introduction to Geometric Probability. Lezioni Lincee. (Cambridge University Press, Cambridge, 1997).

[9] Leinster, T. The Euler characteristic of a category. Documenta Math. 13 (2008), 21–49.

[10] Leinster, T. The magnitude of metric spaces. Documenta Math. 18 (2013), 857–905.

[12] Leinster, T. and Meckes, M. Maximizing diversity in biology and beyond. Entropy 18 (88), (2016).

[13] Leinster, T. and Willerton, S. On the asymptotic magnitude of subsets of Euclidean space. Geome. Dedicata 164 (2013), 287–310.

[14] Meckes, M. W. Positive definite metric spaces. Positivity 17 (2013), 733–757.

[15] Meckes, M. W. Re: Tutte polynomials and magnitude functions. Comment at [**11**] (2013).

[16] Meckes, M. W. Magnitude, diversity, capacities, and dimensions of metric spaces. Potential Anal. 42 (2015), 549–572.

[17] Oxley, J. G. Matroid Theory (Oxford University Press, Oxford, 1992).

[18] Rota, G.–C. On the foundations of combinatorial theory I: theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (1964), 340–368.

[19] Rota, G.–C. Indiscrete Thoughts (Birkhäuser, Boston, 1997).

[20] Schanuel, S. H. Negative sets have Euler characteristic and dimension. In Category Theory (Como, 1990) Lecture Notes in Math. 1488, pages 379–385. (Springer, Berlin, 1991).

[21] Speyer, D. Re: Tutte polynomials and magnitude functions. Comments at [**11**] (2013).

[22] Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge Stud. Adv. Math. **49** (Cambridge University Press, Cambridge, 1997).

[23] Tutte, W. T. A contribution to the theory of chromatic polynomials. Canad. J. Math. 6 (1954), 80–91.

[24] Weil, A. A 1940 letter of André Weil on analogy in mathematics. Not. Amer. Math. Soc. 52 (3) (2005), 334–341.

[25] Whitney, H. 2-isomorphic graphs. Amer. J. Math. 55 (1933), 245–254.

[26] Willerton, S. Re: Tutte polynomials and magnitude functions. Comments at [**11**] (2013).