Published online by Cambridge University Press: 04 December 2014
We prove that the coefficients of the mock theta functions\begin{eqnarray*}f(q) = \sum_{n=1}^{\infty} \frac{ q^{n^2}}{(1+q)^2 (1+q^2)^2 \cdots (1+q^n)^2 }\end{eqnarray*}
\begin{eqnarray*}\omega(q)=1+\sum_{n=1}^\infty \frac{q^{2n^2+2n}}{(1+q)^2(1+q^3)^2\cdots (1+q^{2n+1})^2}\end{eqnarray*}