Skip to main content

Multisymplectic structures and the variational bicomplex


Multisymplecticity and the variational bicomplex are two subjects which have developed independently. Our main observation is that re-analysis of multisymplectic systems from the view of the variational bicomplex not only is natural but also generates new fundamental ideas about multisymplectic Hamiltonian PDEs. The variational bicomplex provides a natural grading of differential forms according to their base and fibre components, and this structure generates a new relation between the geometry of the base, covariant multisymplectic PDEs and the conservation of symplecticity. Our formulation also suggests a new view of Noether theory for multisymplectic systems, leading to a definition of multimomentum maps that we apply to give a coordinate-free description of multisymplectic relative equilibria. Our principal example is the class of multisymplectic systems on the total exterior algebra bundle over a Riemannian manifold.

Hide All
[1]Arnold V. I. and Khesin B. A. Topological methods in hydrodynamics. Appl. Math. Sciences 125 (Springer-Verlag, 1998).
[2]Abraham R. and Marsden J. E.Foundations of Mechanics, Second Edition (Addison-Wesley, 1978).
[3]Anderson I. M.The Variational Bicomplex, book manuscript. (Utah State University, 1989).
[4]Anderson I. M.Introduction to the variational bicomplex. In Mathematical aspects of classical field theory. Contemp. Math. 132 (1992), 5173.
[5]Binz A., Śniatycki J., and Fischer H. Geometry of classical fields. North-Holland Mathematics Studies 154 (North-Holland, 1988).
[6]Bridges T. J.Multi-symplectic structures and wave propagation. Math. Proc. Camb. Phil. Soc. 121 (1997), 147190.
[7]Bridges T. J.Toral-equivariant partial differential equations and quasiperiodic patterns. Nonlinearity 11 (1998), 467500.
[8]Bridges T. J.Canonical multi-symplectic structure on the total exterior algebra bundle. Proc. Royal Soc. London A 462 (2006), 15311551.
[9]Bridges T. J. and Laine-Pearson F. E.Multi-symplectic relative equilibria, multi-phase wavetrains and coupled NLS equations. Stud. Appl. Math. 107 (2001), 137155.
[10]Cantrijn F., Ibort A. and De León M.On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. (Ser. A) 66 (1999), 303330.
[11]Cullen M. J. P., Douglas R. J., Roulstone I., and Sewell M. J.Generalized semi-geostrophic theory on a sphere. J. Fluid Mech. 531 (2005), 123157.
[12]Frankel T.The Geometry of Physics (Cambridge University Press, 1997).
[13]Gotay M. J., Isenberg J., Marsden J. E., and Montgomery R. Momentum maps and classical fields. Part I: Covariant field theory, arXiv preprint physics/9801019 (1998).
[14]Hydon P. E.Multisymplectic conservation laws for differential and differential-difference equations. Proc. Royal Soc. London A 461 (2005), 16271637.
[15]Kanatchikov I.Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41 (1998), 4990.
[16]Lawson J. K.A frame-bundle generalization of multisymplectic geometry. Rep. Math. Phys. 45 (2000), 183205.
[17]Lawson J. K.A frame-bundle generalization of multisymplectic momentum mappings. Rep. Math. Phys. 53 (2004), 1937.
[18]de León M., McLean M., Norris L. K., Rey–Roca A. and Salgado M. Geometric structures in field theory. Preprint math-ph/0208036 (2002).
[19]Marsden J. E. and Ratiu T. S. Introduction to mechanics and symmetry. Texts Appl. Math. 17, Second edition (Springer-Verlag, 1999).
[20]Marshall J. S.Inviscid Incompressible Flow (John Wiley and Sons, 2001).
[21]Norris L. K.Generalized symplectic geometry on the frame bundle of a manifold. Proc. Symp. Pure Math. 54 (1993), 435465.
[22]Paufler C. and Römer H.Geometry of Hamiltonian n-vector fields in multisymplectic field theory. J. Geom. Phys. 44 (2002), 5269.
[23]Saunders D. J.The Geometry of Jet Bundles. LMS Lecture Note Series 142 (Cambridge University Press, 1989).
[24]Tulczyjew W. M. The Euler-Lagrange resolution. In Lecture Notes in Mathematics 836, 2248 (Springer-Verlag, 1980).
[25]Vinogradov A. M.A spectral sequence associated with a non-linear differential equation, and the algebro-geometric foundations of Lagrangian field theory with constraints. Sov. Math. Dokl. 19 (1978), 144148.
[26]Vinogradov A. M.The C-spectral sequence, Lagrangian formalism and conservation laws I, II. J. Math. Anal. Appl. 100 (1984), 1129.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 162 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th January 2018. This data will be updated every 24 hours.