[1] Adachi, S. and Tanaka, K.. Trudinger type inequalities in ^{N} and their best exponent. Proc. Amer. Math. Soc. 128, no. 7 (1999), 2051–2057.

[2] Adams, D. R.. Sobolev Spaces (Academic Press, New York, 1975).

[3] Atallah Baraket, A.. Local existence and estimations for a semilinear wave equation in two dimension space. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat 8, no. 1 (2004), 1–21.

[4] Berestycki, H. and Cazenave, T.. Instabilité des tats stationnaires dans les quations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris 293, (1981), 489–492.

[5] Berestycki, H. and Lions, P.L.. Nonlinear scalar field equations. Arch. Rat. Mech. Anal. 82, (1983), 313–345.

[6] Brezis, H. and Casenave, T.. A nonlinear heat equation with singular initial data. J. Anal. math. 68, (1996), 73–90.

[7] Ginibre, J. and Velo, G.. The Global Cauchy problem for nonlinear Klein–Gordon equation. Math. Z. 189, (1985), 487–505.

[8] Grillakis, M.. Regularity and asymptotic behavior of the wave equation with a critical nonlinearity. Ann. of Math. 132, (1990), 485–509.

[9] Haraux, A. and Weissler, F. B.. Non uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31, (1982), 167–189.

[10] Ibrahim, S., Majdoub, M. and Masmoudi, N.. Global solutions for a semilinear 2D Klein–Gordon equation with exponential type nonlinearity. Comm. Pure App. Math. 59, no. 11 (2006), 1639–1658.

[11] Ibrahim, S., Masmoudi, N. and Nakanishi, K.. Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4, no. 3 (2011), 405–460.

[12] Ibrahim, S., Majdoub, M., Jrad, R. and Saanouni, T.. Global well posedness of a 2*D* semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21, no. 3 (2014), 535–551.

[13] Ioku, N.. The Cauchy problem for heat equations with exponential nonlinearity. J. Differential Equations 251, no. 4 (2011), 1172–1194.

[14] Jeanlean, L. and Le Coz, S.. Instability for standing waves on nonlinear Klein–Gordon equations via mountain pass arguments. Trans. Amer. Math. Soc. 361, no. 10 (2009), 5401–5416.

[15] Kenig, C. E. and Merle, F.. Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation. Acta Math. 201, (2008), 147–212.

[16] Lebeau, G.. Nonlinear optics and supercritical wave equation. Bull. Soc. Roy. Sci. Liège 70, no. 4–6 (2001), 267–306.

[17] Lebeau, G.. Perte de régularité pour l'équation des ondes surcritique. Bull. Soc. Math. France 133, (2005), 145–157.

[18] Levine, H. A. Instability and nonexistence of global solutions to nonlinear wave equations of the form *Pu*_{tt} = ċċ *Au* + *F*(*u*). Trans. Amer. Math. Soc. 192, (1974).

[19] Mahouachi, O. and Saanouni, T.. Global well posedness and linearization of a semilinear wave equation with exponential growth. Georgian Math. J. 17, no. 3 (2010), 543–562.

[20] Mahouachi, O. and Saanouni, T.. Well and ill-posedness issues for a class of 2*D* wave equation with exponential growth. J. Partial Differential Equations 24, no. 4 (2011), 361–384.

[21] Moser, J.. A sharp form of an inequality of N. Trudinger. Ind. Univ. Math. J. 20, (1971), 1077–1092.

[22] Nakamura, M. and Ozawa, T.. Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z 231, (1999), 479–487.

[23] Ohta, M. and Todorova, G.. Strong instability of standing waves for nonlinear Klein–Gordon equations. Discrete Contin. Dyn. Syst. 12, no. 2 (2005), 315–322.

[24] Ohta, M. and Todorova, G.. *Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon-Zakharov system*. SIAM J. Math. Anal. 38, no. 6 (2007), 1912–1931.

[25] Payne, L. E. and Sattinger, D. H.. *Saddle points and instability of nonlinear hyperbolic equations*. Israel J. Math. 22, (1975), 273–303.

[26] Ruf, B.. A sharp Moser–Trudinger type inequality for unbounded domains in ^{2}. J. Funct. Anal. 219, (2004), 340–367.

[27] Shatah, J. and Struwe, M.. Well-Posedness in the energy space for semilinear wave equation with critical growth. Ins. Math. Res. Not. 7, (1994), 303–309.

[28] Saanouni, T.. Global well-posedness and scattering of a 2D schrödinger equation with exponential growth. Bull. Belg. Math. Soc. Simon Stevin. 17, (2010), 441–462.

[29] Shatah, J.. Unstable ground state of nonlinear Klein–Gordon equations. Trans. Amer. Math. Soc. 290, 2 (1985), 701–710.

[30] Shatah, J. and Strauss, W.. Instability of nonlinear bound states. Comm. Math. Phys. 100, no. 2 (1985), 173–190.

[31] Strauss, W.. Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, no. 2 (1977), 149–162.

[32] Struwe, M.. Semilinear wave equations. Bull. Amer. Math. Soc, N.S. 26, (1992), 53–85.

[33] Struwe, M.. The critical nonlinear wave equation in two space dimensions. J. Eur. Math. Soc. 15, no. 5 (2013), 1805–1823.

[34] Struwe, M.. Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, (2011), 707–719.

[35] Trudinger, N. S.. On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, (1967), 473–484.

[36] Weissler, F. B.. Local existence and nonexistence for a semilinear parabolic equation in *L*^{p}. Indiana Univ. Math. J. 29, (1980), 79–102.

[37] Weissler, F. B.. Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, (1981), 29–40.