Skip to main content

A note on strong instability of standing waves for some semilinear wave and heat equations

  • T. SAANOUNI (a1)

The initial value problems for some semilinear wave and heat equations are investigated in two space dimensions. By proving the existence of ground state, strong instability of standing waves for the associated wave and heat equations are obtained.

Hide All
[1] Adachi, S. and Tanaka, K.. Trudinger type inequalities in N and their best exponent. Proc. Amer. Math. Soc. 128, no. 7 (1999), 20512057.
[2] Adams, D. R.. Sobolev Spaces (Academic Press, New York, 1975).
[3] Atallah Baraket, A.. Local existence and estimations for a semilinear wave equation in two dimension space. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat 8, no. 1 (2004), 121.
[4] Berestycki, H. and Cazenave, T.. Instabilité des tats stationnaires dans les quations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris 293, (1981), 489492.
[5] Berestycki, H. and Lions, P.L.. Nonlinear scalar field equations. Arch. Rat. Mech. Anal. 82, (1983), 313345.
[6] Brezis, H. and Casenave, T.. A nonlinear heat equation with singular initial data. J. Anal. math. 68, (1996), 7390.
[7] Ginibre, J. and Velo, G.. The Global Cauchy problem for nonlinear Klein–Gordon equation. Math. Z. 189, (1985), 487505.
[8] Grillakis, M.. Regularity and asymptotic behavior of the wave equation with a critical nonlinearity. Ann. of Math. 132, (1990), 485509.
[9] Haraux, A. and Weissler, F. B.. Non uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31, (1982), 167189.
[10] Ibrahim, S., Majdoub, M. and Masmoudi, N.. Global solutions for a semilinear 2D Klein–Gordon equation with exponential type nonlinearity. Comm. Pure App. Math. 59, no. 11 (2006), 16391658.
[11] Ibrahim, S., Masmoudi, N. and Nakanishi, K.. Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4, no. 3 (2011), 405460.
[12] Ibrahim, S., Majdoub, M., Jrad, R. and Saanouni, T.. Global well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21, no. 3 (2014), 535551.
[13] Ioku, N.. The Cauchy problem for heat equations with exponential nonlinearity. J. Differential Equations 251, no. 4 (2011), 11721194.
[14] Jeanlean, L. and Le Coz, S.. Instability for standing waves on nonlinear Klein–Gordon equations via mountain pass arguments. Trans. Amer. Math. Soc. 361, no. 10 (2009), 54015416.
[15] Kenig, C. E. and Merle, F.. Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation. Acta Math. 201, (2008), 147212.
[16] Lebeau, G.. Nonlinear optics and supercritical wave equation. Bull. Soc. Roy. Sci. Liège 70, no. 4–6 (2001), 267306.
[17] Lebeau, G.. Perte de régularité pour l'équation des ondes surcritique. Bull. Soc. Math. France 133, (2005), 145157.
[18] Levine, H. A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = ċċ Au + F(u). Trans. Amer. Math. Soc. 192, (1974).
[19] Mahouachi, O. and Saanouni, T.. Global well posedness and linearization of a semilinear wave equation with exponential growth. Georgian Math. J. 17, no. 3 (2010), 543562.
[20] Mahouachi, O. and Saanouni, T.. Well and ill-posedness issues for a class of 2D wave equation with exponential growth. J. Partial Differential Equations 24, no. 4 (2011), 361384.
[21] Moser, J.. A sharp form of an inequality of N. Trudinger. Ind. Univ. Math. J. 20, (1971), 10771092.
[22] Nakamura, M. and Ozawa, T.. Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z 231, (1999), 479487.
[23] Ohta, M. and Todorova, G.. Strong instability of standing waves for nonlinear Klein–Gordon equations. Discrete Contin. Dyn. Syst. 12, no. 2 (2005), 315322.
[24] Ohta, M. and Todorova, G.. Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon-Zakharov system. SIAM J. Math. Anal. 38, no. 6 (2007), 19121931.
[25] Payne, L. E. and Sattinger, D. H.. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22, (1975), 273303.
[26] Ruf, B.. A sharp Moser–Trudinger type inequality for unbounded domains in 2. J. Funct. Anal. 219, (2004), 340367.
[27] Shatah, J. and Struwe, M.. Well-Posedness in the energy space for semilinear wave equation with critical growth. Ins. Math. Res. Not. 7, (1994), 303309.
[28] Saanouni, T.. Global well-posedness and scattering of a 2D schrödinger equation with exponential growth. Bull. Belg. Math. Soc. Simon Stevin. 17, (2010), 441462.
[29] Shatah, J.. Unstable ground state of nonlinear Klein–Gordon equations. Trans. Amer. Math. Soc. 290, 2 (1985), 701710.
[30] Shatah, J. and Strauss, W.. Instability of nonlinear bound states. Comm. Math. Phys. 100, no. 2 (1985), 173190.
[31] Strauss, W.. Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, no. 2 (1977), 149162.
[32] Struwe, M.. Semilinear wave equations. Bull. Amer. Math. Soc, N.S. 26, (1992), 5385.
[33] Struwe, M.. The critical nonlinear wave equation in two space dimensions. J. Eur. Math. Soc. 15, no. 5 (2013), 18051823.
[34] Struwe, M.. Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, (2011), 707719.
[35] Trudinger, N. S.. On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, (1967), 473484.
[36] Weissler, F. B.. Local existence and nonexistence for a semilinear parabolic equation in Lp. Indiana Univ. Math. J. 29, (1980), 79102.
[37] Weissler, F. B.. Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, (1981), 2940.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 222 *
Loading metrics...

* Views captured on Cambridge Core between 9th March 2017 - 16th August 2018. This data will be updated every 24 hours.