Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-10-31T08:27:14.714Z Has data issue: false hasContentIssue false

On a Hardy-Littlewood problem of diophantine approximation

Published online by Cambridge University Press:  24 October 2008

D. C. Spencer
Affiliation:
Trinity CollegeCambridge

Extract

1. Let .

When r is a positive integer, various writers have considered sums of the form

where ω1 and ω2 are two positive numbers whose ratio θ = ω12 is irrational and ξ is a real number satisfying 0 ≤ ξ < ω1. In particular, Hardy and Littlewood (2,3,4), Ostrowski(9), Hecke(6), Behnke(1), and Khintchine(7) have given best possible approximations for sums of this type for various classes of irrational numbers. Most writers have confined themselves to the case r = 1, in which

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Behnke, H.Zur Theorie der diophantische Approximationen”, Hamburg math. Abhandlungen, 3 (1924), 261318.CrossRefGoogle Scholar
(2)Hardy, G. H. and Littlewood, J. E.Some problems of diophantine approximation”, Proc. 5th Int. Congress of Mathematicians (1912), pp. 223229.Google Scholar
(3)Hardy, G. H. and Littlewood, J. E.The lattice points of a right-angled triangle”, Proc. London Math. Soc. (2), 20 (1921), 1536.Google Scholar
(4)Hardy, G. H. and Littlewood, J. E.The lattice points of a right-angled triangle” (second memoir), Hamburg math. Abhandlungen, 1 (1922), 212–49.Google Scholar
(5)Hardy, G. H. and Littlewood, J. E.A series of cosecants”, Bull. Calcutta Math. Soc. 20 (1930), 251–66.Google Scholar
(6)Hecke, E.Über analytische Funktionen und die Verteilung von Zahlen mod. Eins”, Hamburg math. Abhandlungen, 1 (1922), 5476.CrossRefGoogle Scholar
(7)Khintchine, A.Ein Satz über Kettenbrüchen, mit arithmetischen Anwendungen”, Math. Z. 18 (1923), 289306.CrossRefGoogle Scholar
(8)Koksma, J. F. “Diophantische Approximationen”, Ergebnisse d. Math., 4, Hft. 4 (Springer, 1936).Google Scholar
(9)Ostrowski, A.Bemerkungen zur Theorie der Diophantische Approximationen”, Hamburg math. Abhandlungen, 1 (1922), 7798.CrossRefGoogle Scholar
(10)Perron, O.Die Lehre von den Kettenbrüchen (Teubner, 1929).Google Scholar