Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T22:26:20.476Z Has data issue: false hasContentIssue false

On a parametric family of Thue inequalities over function fields

Published online by Cambridge University Press:  01 July 2007

CLEMENS FUCHS
Affiliation:
ETH Zurich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland. e-mail: clemens.fuchs@math.ethz.ch
BORKA JADRIJEVIĆ
Affiliation:
University of Split, FESB, R. Boškovića bb, 21000 Split, Croatia. University of Split, Department of Mathematics, Teslina 12, 21000 Split, Croatia. e-mail: borka@pmfst.hr

Abstract

In this paper we completely solve a family of Thue inequalities defined over the field of functions , namely deg (X4−4cX3Y+(6c+2)X2Y2+4cXY3+Y4) ≤ deg c, where the solutions x,y come from the ring and the parameter is some non-constant polynomial.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, A. and Davenport, H.. The equations 3x 2 − 2 = y 2 and 8x 2 − 7 = z 2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129137.7.CrossRefGoogle Scholar
[2]Dujella, A.. The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311322.CrossRefGoogle Scholar
[3]Dujella, A. and B. Jadrijević. A parametric family of quartic Thue equations. Acta Arith. 101(2) (2001), 159169.Google Scholar
[4]Dujella, A. and B. Jadrijević. A family of quartic Thue inequalities. Acta Arith. 111(1) (2002), 6176.Google Scholar
[5]Dujella, A. and A. Pethő. Generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291306.CrossRefGoogle Scholar
[6]Fuchs, C. and Ziegler, V.. On a family of Thue equations over function fields. Monatsh. Math. 147 (2006), 1123.CrossRefGoogle Scholar
[7]Fuchs, C. and Ziegler, V.. Thomas' family of Thue equations over function fields. Quart. J. Math. (Oxford) 57 (2006), 8191.CrossRefGoogle Scholar
[8]Gill, B. P.. An analogue for algebraic functions of the Thue-Siegel theorem. Ann. of Math. (2) 31 (2) (1930), 207218.CrossRefGoogle Scholar
[9]Heuberger, C., Togbé, A. and Ziegler, V.. Automatic solution of families of Thue equations and an example of degree 8. J. Symbolic Computation 38 (2004), 11451163.CrossRefGoogle Scholar
[10]Jadrijević, B. and Ziegler, V.. A system of relative Pellian equations and a family of relative related Thue equations. Int. J. Number Theory 2 (4) (2006), 569590.CrossRefGoogle Scholar
[11]Lettl, G.. Thue equations over algebraic function fields. Acta Arith. 117 (2004), 107123.CrossRefGoogle Scholar
[12]Lettl, G.. Parametrized solutions of Diophantine equations. Math. Slovaca 54 (2004), 465471.Google Scholar
[13]Lettl, G., Pethő, A. and Voutier, P.. Simple families of Thue inequalities. Trans. Amer. Math. Soc. 351 (1999), 18711894.CrossRefGoogle Scholar
[14]Mason, R. C.. On Thue's equation over function fields. J. London Math. Soc. (2) 24 (1981), 414426.CrossRefGoogle Scholar
[15]Mason, R. C.. Diophantine Equations over Function Fields. London Mathematical Society Lecture Note Series, vol. 96 (Cambridge University Press, 1984).CrossRefGoogle Scholar
[16]de Mathan, B.. Approximations diophantiennes dans un corps local. Bull. Soc. Math. France, Suppl. Mem. 21 (1970).Google Scholar
[17]Mignotte, M., Pethő, A. and Lemmermeyer, F.. On the family of Thue equations x 3 − (n − 1)x 2y − (n + 2)xy 2y 3 = k. Acta Arith. 76 (1996), 245269.CrossRefGoogle Scholar
[18]Niven, I., Zuckerman, H. S. and Montgomery, H. L.. An Introduction to the Theory of Numbers (John Wiley,1991).Google Scholar
[19]Schmidt, W. M.. Thue's equation over function fields. J. Austral. Math. Soc. Ser. A 25(4) (1978), 385422.CrossRefGoogle Scholar
[20]Schmidt, W. M.. Continued fractions and diophantine approximation. Acta Arith. 95(2) (2000), 139166.CrossRefGoogle Scholar
[21]Thomas, E.. Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235250.CrossRefGoogle Scholar
[22]Thue, A.. Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135 (1909), 284305.CrossRefGoogle Scholar
[23]Stichtenoth, H.. Algebraic Function Fields and Codes (Springer Verlag, 1993).Google Scholar
[24]Tzanakis, N.. Explicit solution of a class of quartic Thue equations. Acta Arith. 64 (1993), 271283.CrossRefGoogle Scholar
[25]Wakabayashi, I.. On a family of quartic Thue inequalities. J. Number Theory 66 (1997), 7084.CrossRefGoogle Scholar
[26]Wakabayashi, I.. On a family of quartic Thue inequalities, II. J. Number Theory 80 (2000), 6088.CrossRefGoogle Scholar
[27]Wakabayashi, I.. Cubic Thue inequalities with negative discriminant. J. Number Theory 97 (2002), 222251.CrossRefGoogle Scholar