Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 291
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Feghali, Carl Johnson, Matthew and Paulusma, Daniël 2017. Kempe equivalence of colourings of cubic graphs. European Journal of Combinatorics, Vol. 59, p. 1.


    Caro, Yair Hansberg, Adriana and Pepper, Ryan 2016. Regular independent sets. Discrete Applied Mathematics, Vol. 203, p. 35.


    David, Roee and Feige, Uriel 2016. Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016. p. 77.

    Elphick, Clive Farber, Miriam Goldberg, Felix and Wocjan, Pawel 2016. Conjectured bounds for the sum of squares of positive eigenvalues of a graph. Discrete Mathematics, Vol. 339, Issue. 9, p. 2215.


    Fischer, Mareike and Kelk, Steven 2016. On the Maximum Parsimony Distance Between Phylogenetic Trees. Annals of Combinatorics, Vol. 20, Issue. 1, p. 87.


    Fleiner, T. and Wiener, G. 2016. Coloring signed graphs using DFS. Optimization Letters, Vol. 10, Issue. 4, p. 865.


    Furmańczyk, Hanna Kubale, Marek and Radziszowski, Stanisław 2016. On bipartization of cubic graphs by removal of an independent set. Discrete Applied Mathematics, Vol. 209, p. 115.


    Furmańczyk, Hanna and Kubale, Marek 2016. Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines. Discrete Applied Mathematics,


    Ganian, Robert Hliněný, Petr Kneis, Joachim Meister, Daniel Obdržálek, Jan Rossmanith, Peter and Sikdar, Somnath 2016. Are there any good digraph width measures?. Journal of Combinatorial Theory, Series B, Vol. 116, p. 250.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    George, John C. Khodkar, Abdollah and Wallis, W. D. 2016. Pancyclic and Bipancyclic Graphs.


    Golowich, Noah 2016. The <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>m</mml:mi></mml:math>-degenerate chromatic number of a digraph. Discrete Mathematics, Vol. 339, Issue. 6, p. 1734.


    Jahanbekam, Sogol Kim, Jaehoon O, Suil and West, Douglas B. 2016. On <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>r</mml:mi></mml:math>-dynamic coloring of graphs. Discrete Applied Mathematics, Vol. 206, p. 65.


    Jia, Bin and Wood, David R. 2016. Hadwiger's Conjecture for ℓ-Link Graphs. Journal of Graph Theory, p. n/a.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 37, Issue 2
  • April 1941, pp. 194-197

On colouring the nodes of a network

  • R. L. Brooks (a1)
  • DOI: http://dx.doi.org/10.1017/S030500410002168X
  • Published online: 24 October 2008
Abstract
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×