[Bo86] Borcherds, R. E. Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat'l. Acad. Sci. U.S.A. 83 (1986), 3068–3071.

[Bo92] Borcherds, R. E. Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109 (1992), 405–444.

[BCP97] Bosma, W., Cannon, J. and Playoust, C. The Magma algebra system I: the user language. J. Symbolic Comput. 24 (1997), 235–265.

[CM] Carnahan, S. and Miyamoto, M. Regularity of fixed-point vertex operator subalgebras. arXiv:1603.05645.

[DGM96] Dolan, L., Goddard, P. and Montague, P. Conformal field theories, representations and lattice constructions. Comm. Math. Phys. 179 (1996), 61–120.

[DL96] Dong, C. and Lepowsky, J. The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110 (1996), 259–295.

[DLM00] Dong, C., Li, H., and Mason, G. Modular-invariance of trace functions in orbifold theory and generalised moonshine. Comm. Math. Phys. 214 (2000), 1–56.

[DM04a] Dong, C. and Mason, G. Holomorphic vertex operator algebras of small central charge. Pacific J. Math. 213 (2004), 253–266.

[DM04b] Dong, C. and Mason, G. Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. (2004), 2989–3008.

[DM06] Dong, C. and Mason, G. Integrability of *C* _{2}-cofinite vertex operator algebras. *Int. Math. Res. Not.* (2006), Art. ID 80468, 15 pp.

[DN99] Dong, C. and Nagatomo, K. Automorphism groups and twisted modules for lattice vertex operator algebras, *in* Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 117–133, Contemp. Math. 248 (Amer. Math. Soc., Providence, RI, 1999).

[EMS1] Van Ekeren, J., Möller, S. and Scheithauer, N. Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. (published online).

[EMS2] Van Ekeren, J., Möller, S. and Scheithauer, N. Dimension formulae in genus zero and uniqueness of vertex operator algebras. Internat. Math. Res. Notices (published online).

[FHL93] Frenkel, I. B., Huang, Y. and Lepowsky, J. On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993), viii+64 pp.

[FLM88] Frenkel, I. B., Lepowsky, J. and Meurman, A. Vertex operator algebras and the monster. Pure and Appl. Math. vol. 134 (Academic Press, Boston, 1988).

[FZ92] Frenkel, I. and Zhu, Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66 (1992), 123–168.

[HL90] Harada, K. and Lang, M. L. On some sublattices of the Leech lattice. Hokkaido Math. J. 19 (1990), 435–446.

[HM16] Höhn, G. and Mason, G. The 290 fixed-point sublattices of the Leech lattice. J. Algebra 448 (2016), 618–637.

[Ka90] Kac, V. G. Infinite-Dimensional Lie Algebras, third edition (Cambridge University Press, Cambridge, 1990).

[KLL18] Kawasetsu, K., Lam, C. H. and Lin, X. ℤ_{2}-orbifold construction associated with (-1)-isometry and uniqueness of holomorphic vertex operator algebras of central charge 24. Proc. Amer. Math. Soc. 146 (2018), 1937–1950.

[La11] Lam, C. H. On the constructions of holomorphic vertex operator algebras of central charge 24. Comm. Math. Phys. 305 (2011), 153–198

[LL] Lam, C. H. and Lin, X. A Holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra *F* _{4,6}*A* _{2,2}. arXiv:1612.08123.

[LS12] Lam, C. H. and Shimakura, H. Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24. Proc. Lond. Math. Soc. 104 (2012), 540–576.

[LS15] Lam, C. H. and Shimakura, H. Classification of holomorphic framed vertex operator algebras of central charge 24. Amer. J. Math. 137 (2015), 111–137.

[LS16a] Lam, C. H. and Shimakura, H. Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms. Comm. Math. Phys. 342 (2016), 803–841.

[LS16b] Lam, C. H. and Shimakura, H. A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has the type *A* _{6,7}. Lett. Math. Phys. 106 (2016), 1575–1585.

[LS] Lam, C. H. and Shimakura, H. Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras. arXiv:1606.08979.

[Le85] Lepowsky, J. Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 82 (1985), 8295–8299.

[Li94] Li, H. Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra, 96 (1994), 279–297.

[Li96] Li, H. Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, *in* Moonshine, the Monster, and related topics. Contemp. Math. 193, (Amer. Math. Soc., Providence, RI, 1996), 203–236.

[Li01] Li, H. Certain extensions of vertex operator algebras of affine type. Comm. Math. Phys. 217 (2001), 653–696.

[Mi13] Miyamoto, M. A ℤ_{3}-orbifold theory of lattice vertex operator algebra and ℤ_{3}-orbifold constructions, in Symmetries, integrable systems and representations. Springer Proc. Math. Stat. 40 (Springer, Heidelberg, 2013), 319–344.

[Mi15] Miyamoto, M. *C* _{2}-cofiniteness of cyclic-orbifold models. Comm. Math. Phys. 335 (2015), 1279–1286.

[Mö16] Möller, S. A Cyclic Orbifold Theory for holomorphic vertex operator algebras and applications, dissertation (Darmstadt, 2016). arXiv:1611.09843.

[Mo94] Montague, P. S. Orbifold constructions and the classification of self-dual *c* = 24 conformal field theories. Nuclear Phys. B 428 (1994), 233–258.

[SS16] Sagaki, D. and Shimakura, H. Application of a ℤ_{3}-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices. Trans. Amer. Math. Soc. 368 (2016), 1621–1646.

[Sc93] Schellekens, A. N. Meromorphic *c* = 24 conformal field theories. Comm. Math. Phys. 153 (1993), 159–185.

[Wi83] Wilson, R. A. The maximal subgroups of Conway's group *Co* _{1}. J. Algebra 85 (1983), 144–165.