Skip to main content Accessibility help

On the computational complexity of the Jones and Tutte polynomials

  • F. Jaeger (a1), D. L. Vertigan (a2) and D. J. A. Welsh (a2)


We show that determining the Jones polynomial of an alternating link is #P-hard. This is a special case of a wide range of results on the general intractability of the evaluation of the Tutte polynomial T(M; x, y) of a matroid M except for a few listed special points and curves of the (x, y)-plane. In particular the problem of evaluating the Tutte polynomial of a graph at a point in the (x, y)-plane is #P-hard except when (x − 1)(y − 1) = 1 or when (x, y) equals (1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j) where j = e2πi/3



Hide All
[1]Baxter, R. J.. Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
[2]Berman, L. and Hartmanis, J.. On isomorphisms and density of NP and other complete sets. SIAM J. Comput. 6 (1977), 305321.
[3]Bondy, J. A. and Murty, U. S. R.. Graph Theory with Applications (American Elsevier and Macmillan, 1976).
[4]Brylawski, T. H.. A decomposition for combinatorial geometries. Trans. Amer. Math. Soc. 171 (1972), 235282.
[5]Brylawski, T. H. and Lucas, D.. Uniquely representable combinatorial geometries. In Proceedings of International Colloquium in Combinatorial Theory, Rome, Italy, 1973; Atti Convegni Lincei 17 (1976), 83104.
[6]Brylawski, T. H.. The Tutte polynomial; matroid theory and its applications. Centro Internazionale Matematico Estivo 3 (1980), 125275.
[7]Brylawski, T. H. and Oxley, J. G.. The Tutte polynomial and its applications. In Matroid Theory, vol. 3 (ed. White, N.) (Cambridge University Press, to appear).
[8]Crapo, H.. The Tutte polynomial. Aequationes Math. 3 (1969), 211229.
[9]Fisher, M. E.. On the dimer solution of planar Ising models. J. Math. Phys. 7 (1966), 17761781.
[10]Garey, M. R. and Johnson, D. S.. Computers and Intractability – A Guide to the Theory of NP-completeness (Freeman, 1979).
[11]Garey, M. R., Johnson, D. S. and Stockmeyer, L.. Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1 (1976), 237267.
[12]Greene, C.. Weight enumeration and the geometry of linear codes. Stud. Appl. Math. 99 (1976), 117128.
[13]Grötschel, M., Lovász, L. and Schrijver, A.. Geometric Algorithms and Combinatorial Optimization (Springer-Verlag, 1988).
[14]Jaeger, F.. On Tutte polynomials and cycles of plane graphs. J. Combin. Theory Ser. B 44 (1988), 129146.
[15]Jaeger, F.. On Tutte polynomials and link polynomials. Proc. Amer. Math. Soc. 103 (1988), 647654.
[16]Jaeger, F.. On Tutte polynomials and bicycle dimension of ternary matroids. Proc. Amer. Math. Soc. 107 (1989), 1725.
[17]Jaeger, F.. Nowhere zero flow problems. In Selected Topics in Graph Theory 3 (ed. Beineke, L. and Wilson, R. J.) (Academic Press, 1988), pp. 7195.
[18]Jerrum, M. R.. The complexity of evaluating multivariate polynomials. Ph.D. thesis, University of Edinburgh (1981).
[19]Jerrum, M. R.. 2-dimensional monomer-dimer systems are computationally intractable. J. Statist. Phys. 48 (1987), 121134.
[20]Jerrum, M.. (Private communication, March 1989.)
[21]Jones, V. F. R.. A polynomial invariant for knots via Von Neumann algebras. Bull. Amer. Math. Soc. 12 (1985), 103111.
[22]Kasteleyn, P. W.. Graph theory and crystal physics. In Graph Theory and Theoretical Physics (ed. Harary, F.) (Academic Press, 1967), pp. 43110.
[23]Kauffman, L.. On Knots (Princeton University Press, 1987).
[24]Vergnas, M. Las. Convexity in oriented matroids. J. Combin. Theory Ser. B 29 (1980), 231243.
Vergnas, M. LasMatroides orientables. C. R. Acad. Sci. Paris Ser. A 280 (1975), 6164.
[25]Vergnas, M. Las. Le polynôme de Martin d'un graphe Eulérien. Ann. Discrete Math. 17 (1983), 397411.
[26]Lickorish, W. B. R.. Polynomials for links. Bull. London Math. Soc. 20 (1988), 558588.
[27]Linial, N.. Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic Discrete Methods 7 (1986), 331335.
[28]Lipson, A. S.. An evaluation of a link polynomial. Math. Proc. Cambridge Philos. Soc. 100 (1986), 361364.
[29]MacWilliams, F. J. and Sloane, N. J. A.. The Theory of Error Correcting Codes (North Holland, 1977).
[30]Martin, P.. Remarkable valuation of the dichromatic polynomial of planar multigraphs. J. Combin. Theory Ser. B 24 (1978), 318324.
[31]Oxley, J. G. and Welsh, D. J. A.. The Tutte polynomial and percolation. In Graph Theory and Related Topics (Academic Press, 1979), pp. 329339.
[32]Provan, J. S.. The complexity of reliability computations in planar and acyclic graphs. SIAM J. Comput. 15 (1986), 694702.
[33]Provan, J. S. and Ball, M. O.. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12 (1983), 777788.
[34]Robinson, G. C. and Welsh, D. J. A.. The computational complexity of matroid properties. Math. Proc. Cambridge Philos. Soc. 87 (1980), 2945.
[35]Rosenstiehl, P. and Read, R. C.. On the principal edge tripartition of a graph. Ann. Discrete Math. 3 (1978), 195226.
[36]Seymour, P. D.. Decomposition of regular matroids. J. Combin. Theory Ser. B 28 (1980), 305359.
[37]Seymour, P. D.. Nowhere-zero 6-flows. J. Combin. Theory Ser. B 30 (1981), 130135.
[38]Stanley, R. P.. Enumerative Combinatorics, vol. 1 (Wadsworth & Brooks/Cole, 1986).
[39]Thistlethwaite, M. B.. A spanning tree expansion of the Jones polynomial. Topology 26 (1987), 297309.
[40]Thistlethwaite, M. B.. On the Kauffman polynomial of an adequate link. Invent. Math. 93 (1988), 285296.
[41]Tutte, W. T.. A ring in graph theory. Proc. Cambridge Philos. Soc. 43 (1947), 2640.
[42]Valiant, L. G.. The complexity of computing the permanent. Theoret. Comput. Sci. 8 (1979), 189201.
[43]Valiant, L. G.. The complexity of enumeration and reliability problems. SIAM J. Comput. 8 (1979), 410421.
[44]Vertigan, D. L.. On the computational complexity of Tutte, Homfly and Kauffman invariants (to appear).
[45]Welsh, D. J. A.. Matroid Theory. London Math. Soc. Monograph no. 8 (Academic Press, 1976).
[46]Welsh, D. J. A.. Matroids and their applications. In Selected Topics in Oraph Theory 3 (ed. Beineke, L. and Wilson, R. J.) (Academic Press, 1988), pp. 4371.
[47]Whitney, H.. A logical expansion in mathematics. Bull. Amer. Math. Soc. 38 (1932), 572579.
[48]Whitney, H.. On the abstract properties of linear dependence. Amer. J. Math. 57 (1935), 509533.
[49]Zaslavsky, T.. Facing up to arrangements: face count formulas for partitions of spaces by hyperplanes. Memoirs Amer. Math. Soc. vol. 154 (American Mathematical Society, 1975).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed