Hostname: page-component-7dd5485656-s6l46 Total loading time: 0 Render date: 2025-10-26T21:39:21.065Z Has data issue: false hasContentIssue false

On the degree-two part of the associated graded of the lower central series of the Torelli group

Published online by Cambridge University Press:  20 October 2025

QUENTIN FAES
Affiliation:
Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. e-mail: quentin.faes@uclouvain.be
GWÉNAËL MASSUYEAU
Affiliation:
Université Bourgogne Europe, CNRS, IMB (UMR 5584), 21000 Dijon, France. e-mail: gwenael.massuyeau@ube.fr
MASATOSHI SATO
Affiliation:
Department of Mathematics and Data Science, Tokyo Denki University, 5 Senjuasahi-cho, Adachi-ku, Tokyo 120-8551, Japan. e-mail: msato@mail.dendai.ac.jp

Abstract

We consider the associated graded $\bigoplus_{k\geq 1} \Gamma_k \mathcal{I} /\Gamma_{k+1} \mathcal{I} $ of the lower central series $\mathcal{I}\,=\,\Gamma_1 \mathcal{I}\supset \Gamma_2 \mathcal{I}\supset \Gamma_3 \mathcal{I} \supset \cdots$ of the Torelli group $\mathcal{I}$ of a compact oriented surface. Its degree-one part is well understood by D. Johnson’s seminal works on the abelianization of the Torelli group. The knowledge of the degree-two part $(\Gamma_2 \mathcal{I} / \Gamma_3 \mathcal{I})\otimes \mathbb{Q}$ with rational coefficients arises from works of S. Morita on the Casson invariant and R. Hain on the Malcev completion of $\mathcal{I}$. Here, we prove that the abelian group $\Gamma_2 \mathcal{I} / \Gamma_3 \mathcal{I}$ is torsion-free, and we describe it as a lattice in a rational vector space. As an application, the group $\mathcal{I}/\Gamma_3 \mathcal{I}$ is computed, and it is shown to embed in the group of homology cylinders modulo the surgery relation of $Y_3$-equivalence.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Auclair, E.. Surfaces et invariants de type fini en dimension 3. PhD. thesis. Université Joseph–Fourier (Grenoble I) (2006).Google Scholar
Faes, Q.. Triviality of the $J_4$ -equivalence among homology 3-spheres. Trans. Amer. Math. Soc. 375 (9) (2022), 65976620.Google Scholar
Faes, Q.. The handlebody group and the images of the second Johnson homomorphism. Algebr. Geom. Topol. 23 (1) (2023), 243293.10.2140/agt.2023.23.243CrossRefGoogle Scholar
Faes, Q.. Torsion in the cokernels of the Johnson homomorphisms. Int. Math. Res. Not. 2025 (10) (2025).10.1093/imrn/rnaf121CrossRefGoogle Scholar
Farb, B. and Margalit, D.. A primer on mapping class groups. Princeton Math. Ser. 49 (Princeton University Press, Princeton, NJ, 2012).Google Scholar
Garoufalidis, S. and Levine, J.. Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism. In Graphs and Patterns in Mathematics and Theoretical Physics. Proc. Sympos. Pure Math., vol. 73 (Amer. Math. Soc., Providence, RI, 2005), pp. 173203.10.1090/pspum/073/2131016CrossRefGoogle Scholar
Gervais, S. and Habegger, N.. The topological IHX relation, pure braids, and the Torelli group. Duke Math. J. 112 (2) (2002), 265280.10.1215/S0012-9074-02-11222-8CrossRefGoogle Scholar
Goussarov, M.. Variations of knotted graphs. The geometric technique of n-equivalence. Algebra i Analiz 12 (4) (2000), 79125.Google Scholar
Habegger, N. and Sorger, C.. An infinitesimal presentation of the Torelli group of a surface with boundary. Preprint (2000).Google Scholar
Habiro, K.. Claspers and finite type invariants of links. Geom. Topol. 4 (2000), 183.10.2140/gt.2000.4.1CrossRefGoogle Scholar
Habiro, K. and Massuyeau, G.. Symplectic Jacobi diagrams and the Lie algebra of homology cylinders. J. Topology 2 (3) (2009), 527569.10.1112/jtopol/jtp020CrossRefGoogle Scholar
Habiro, K. and Massuyeau, G.. From mapping class groups to monoids of homology cobordisms: a survey. Handbook of Teichmüller theory, vol. III. IRMA Lect. Math. Theor. Phys. 17 (Eur. Math. Soc., Zürich, 2012), pp. 465529.10.4171/103-1/9CrossRefGoogle Scholar
Hain, R.. Infinitesimal presentations of the Torelli groups. J. Amer. Math. Soc. 10 (3) (1997), 597651.10.1090/S0894-0347-97-00235-XCrossRefGoogle Scholar
Hain, R.. Genus 3 mapping class groups are not Kähler. J. Topol. 8 (1) (2015), 213246.10.1112/jtopol/jtu020CrossRefGoogle Scholar
Johnson, D.. Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1) (1979), 119125.10.1090/S0002-9939-1979-0529227-4CrossRefGoogle Scholar
Johnson, D.. An abelian quotient of the mapping class group $\mathcal{I}_g$ . Math. Ann. 249 (3) (1980), 225242.10.1007/BF01363897CrossRefGoogle Scholar
Johnson, D.. A survey of the Torelli group. In Low-Dimensional Topology (San Francisco, Ca, 1981). Contemp. Math. vol. 20 (Amer. Math. Soc., Providence, RI, 1983), pp. 165179.10.1090/conm/020/718141CrossRefGoogle Scholar
Johnson, D.. The structure of the Torelli group. III. The abelianisation of $\mathcal{I}$ . Topology 24 (2) (1985), 127144.10.1016/0040-9383(85)90050-3CrossRefGoogle Scholar
Kupers, A. and Randal-Williams, O.. On the Torelli Lie algebra. Forum Math. Pi 11 (2023), paper no. 13, 47 pp.10.1017/fmp.2023.10CrossRefGoogle Scholar
Massuyeau, A. G. and Meilhan, J.–B.. Characterization of $Y_2$ -equivalence for homology cylinders. J. Knot Theory Ramifications 12 (4) (2003), 493522.10.1142/S0218216503002585CrossRefGoogle Scholar
Massuyeau, G. and Meilhan, J.–B.. Equivalence relations for homology cylinders and the core of the Casson invariant. Trans. Amer. Math. Soc. 365 (10) (2013), 54315502.10.1090/S0002-9947-2013-05818-7CrossRefGoogle Scholar
Morita, S.. Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles, I. Topology 28 (3) (1989), 305323.10.1016/0040-9383(89)90011-6CrossRefGoogle Scholar
Morita, S.. On the structure of the Torelli group and the Casson invariant. Topology 30 (4) (1991), 603621.10.1016/0040-9383(91)90042-3CrossRefGoogle Scholar
Morita, S.. Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (3) (1993), 699726.10.1215/S0012-7094-93-07017-2CrossRefGoogle Scholar
Morita, S., Sakasai, T. and Suzuki, M.. Torelli group, Johnson kernel, and invariants of homology spheres. Quantum Topol. 11 (2) (2020), 379410.10.4171/qt/138CrossRefGoogle Scholar
Nozaki, Y., Sato, M. and Suzuki, M.. Abelian quotients of the Y-filtration on the homology cylinders via the LMO functor. Geom. Topol. 26 (2022), 221282.10.2140/gt.2022.26.221CrossRefGoogle Scholar
Nozaki, Y., Sato, M. and Suzuki, M.. Torsion elements in the associated graded modules of filtrations over the Torelli group and the homology cylinders. To appear in J. Topol. ArXiv:2410.10061. (2024).Google Scholar
Oda, T.. A lower bound for the graded modules associated with the relative weight filtration on the Teichmüller group. Preprint (1992).Google Scholar
Putman, A.. An infinite presentation of the Torelli group. Geom. Funct. Anal. 19 (2) (2009), 591643.10.1007/s00039-009-0006-6CrossRefGoogle Scholar
Yokomizo, Y.. An $\mathrm{Sp}(2g;\mathbb{Z}_2)$ -module structure of the cokernel of the second Johnson homomorphism. Topology Appl. 120 (3) (2002), 385396.10.1016/S0166-8641(01)00279-6CrossRefGoogle Scholar