Skip to main content
    • Aa
    • Aa

On the lines passing through two conjugates of a Salem number


We show that the number of distinct non-parallel lines passing through two conjugates of an algebraic number α of degree d ≥ 3 is at most [d2/2]-d+2, its conjugates being in general position if this number is attained. If, for instance, d ≥ 4 is even, then the conjugates of α ∈ of degree d are in general position if and only if α has 2 real conjugates, d-2 complex conjugates, no three distinct conjugates of α lie on a line and any two lines that pass through two distinct conjugates of α are non-parallel, except for d/2-1 lines parallel to the imaginary axis. Our main result asserts that the conjugates of any Salem number are in general position. We also ask two natural questions about conjugates of Pisot numbers which lead to the equation α1234 in distinct conjugates of a Pisot number. The Pisot number shows that this equation has such a solution.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] C. J. Smyth . The conjugates of algebraic integers. Amer. Math. Monthl 82 (1975), 86.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 42 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th August 2017. This data will be updated every 24 hours.