Skip to main content
    • Aa
    • Aa

On the minimal prime ideals of a tensor product of two fields

  • P. Vámos (a1)

Let F be a field, L a commutative F-algebra and K an extension field of F. An important area of commutative algebra is the study of the passage from L to the k-algebra KFL, i.e. the investigation of the behaviour of the ideals of L under ‘extension of scalars’. In most problems of this kind one finds that the problem is reduced to the case when the algebra L is itself an extension field of F. It is for this reason that tensor products of fields play an important role (see, for example, (2), chap, viii, (3), (5), (9) and (12), vol. I).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.