[1] Babai, L. On the order of uniprimitive permutation groups. Annals of Math. 113 (1981), 553–568.

[2] Bailey, R. F. and Cameron, P. J. Base size, metric dimension and other invariants of groups and graphs. Bull. London Math. Soc. 43 (2011), 209–242.

[3] Blaha, K. D. Minimum bases for permutation groups: the greedy approximation. J. Algorithms 13 (1992), 297–306.

[4] Bosma, W., Cannon, J. and Playoust, C. The Magma algebra system I: the user language. J. Symbolic Comput. 24 (1997), 235–265.

[6] Broere, I., Döman, D. and Ridley, J. N. The clique numbers and chromatic numbers of certain Paley graphs. Quaestiones Math. 11 (1988), 91–93.

[7] Burness, T. C. On base sizes for actions of finite classical groups. J. London Math. Soc. 75 (2007), 545–562.

[8] Burness, T. C. and Giudici, M. Classical groups, derangements and primes. Aust. Math. Soc. Lecture Series, vol. 25 (Cambridge University Press, 2016.)

[9] Burness, T. C., Guralnick, R. M. and Saxl, J. On base sizes for symmetric groups. Bull. London Math. Soc. 43 (2011), 386–391.

[10] Burness, T. C., Guralnick, R. M. and Saxl, J. Base sizes for ${\mathcal{S}}$-actions of finite classical groups. Israel J. Math. 199 (2014), 711–756. [11] Burness, T. C., Guralnick, R. M. and Saxl, J. On base sizes for algebraic groups. J. Eur. Math. Soc. (JEMS) 19 (2017), 2269–2341.

[12] Burness, T. C., Guralnick, R. M. and Saxl, J. Base sizes for geometric actions of finite classical groups. *In preparation*.

[13] Burness, T. C., Liebeck, M. W. and Shalev, A. Base sizes for simple groups and a conjecture of Cameron. Proc. London Math. Soc. 98 (2009), 116–162.

[14] Burness, T. C., Liebeck, M. W. and Shalev, A. The depth of a finite simple group. Proc. Amer. Math. Soc. 146 (2018), 2343–2358.

[15] Burness, T. C., O'Brien, E. A. and Wilson, R. A.. Base sizes for sporadic groups. Israel J. Math. 177 (2010), 307–333.

[16] Cameron, P. J. Some measures of finite groups related to permutation bases. Preprint, arxiv:1408.0968 (2014).

[17] Cameron, P. J. and Fon–Der–Flaass, D. G. Bases for permutation groups and matroids. European J. Combin. 16 (1995), 537–544.

[18] Cameron, P. J. and Kantor, W. M. Random permutations: some group-theoretic aspects. Combin. Probab. Comput. 2 (1993), 257–262.

[19] Dirac, G. A. Some theorems on abstract graphs. Proc. London Math. Soc. 2 (1952), 69–81.

[20] Dixon, J. D. and Mortimer, B. Permutation Groups (Springer-Verlag, New York 1996).

[21] Fawcett, J. B. Bases of primitive permutation groups. Ph.D. thesis. University of Cambridge (2013).

[22] Fawcett, J. B. The base size of a primitive diagonal group. J. Algebra 375 (2013), 302–321.

[23] Fawcett, J. B., Müller, J., O'Brien, E. A. and Wilson, R. A.. Regular orbits of sporadic simple groups. Preprint, arxiv:1801.04561 (2018).

[24] Fawcett, J. B., O'Brien, E. A. and Saxl, J.. Regular orbits of symmetric and alternating groups. J. Algebra 458 (2016), 21–52.

[26] Guralnick, R. M. and Magaard, K. On the minimal degree of a primitive permutation group. J. Algebra 207 (1998), 127–145.

[27] Halasi, Z. On the base size for the symmetric group acting on subsets. Studia Sci. Math. Hungar. 49 (2012), 492–500.

[28] de la Harpe, P. and Weber, C.. Malnormal subgroups and Frobenius groups: basics and examples, with an appendix by Osin, D.. Confluentes Math. 6 (2014), 65–76.

[29] James, J. P. Two point stabilisers of partition actions of linear groups. J. Algebra 297 (2006), 453–469.

[30] James, J. P. Partition actions of symmetric groups and regular bipartite graphs. Bull. London Math. Soc. 38 (2006), 224–232.

[31] James, J. P. Two point stabilisers of partition actions of symmetric, alternating and linear groups. Ph.D. thesis. University of Cambridge (2006).

[32] Jones, G. A. Paley and the Paley graphs. Preprint, arxiv:1702.00285 (2017).

[33] Liebeck, M. W., Praeger, C. E. and Saxl, J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365–383.

[34] Liebeck, M. W and Saxl, J.. On point stabilizers in primitive permutation groups. Comm. Algebra 19 (1991), 2777–2786.

[35] Liebeck, M. W. and Shalev, A. Simple groups, permutation groups, and probability. J. Amer. Math. Soc. 12 (1999), 497–520.

[36] Liebeck, M. W. and Shalev, A. On fixed points of elements in primitive permutation groups. J. Algebra 421 (2015), 438–459.

[37] Lovász, L. The factorization of graphs. In: Combinatorial Structures and their Applications (Gordon and Breach, New York, 1970), 243–246.

[38] Maróti, A. On the orders of primitive groups. J. Algebra 258 (2002), 631–640.

[40] Müller, J., Neunhöffer, M. and Wilson, R. A. Enumerating big orbits and an application: *B* acting on the cosets of *Fi* _{23}. J. Algebra 314 (2007), 75–96.

[41] Neunhöffer, M., Noeske, F., O'Brien, E. A. and Wilson, R.A.. Orbit invariants and an application to the Baby Monster. J. Algebra 341 (2011), 297–305.

[42] Praeger, C. E. The inclusion problem for finite primitive permutation groups. Proc. London Math. Soc. 60 (1990), 68–88.

[43] Schmid, P. The solution of the *k*(*GV*) problem. ICP Advanced Texts in Mathematics, vol. 4 (Imperial College Press, London, 2007).

[44] Seress, Á.. Permutation group algorithms. Cambridge Tracts in Mathematics, vol. 152 (Cambridge University Press, 2003).

[46] Wilson, R. A. Maximal subgroups of sporadic groups. In: Finite simple groups: thirty years of the atlas and beyond, Contemp. Math. vol. 694 (Amer. Math. Soc., 2017), 57–72.

[47] Winter, D. L. The automorphism group of an extraspecial *p*-group. Rocky Mountain J. Math. 2 (1972), 159–168.

[48] Zassenhaus, H. Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11 (1936), 187–220.