Skip to main content Accessibility help
×
Home

On the Saxl graph of a permutation group

  • TIMOTHY C. BURNESS (a1) and MICHAEL GIUDICI (a2)

Abstract

Let G be a permutation group on a set Ω. A subset of Ω is a base for G if its pointwise stabiliser in G is trivial. In this paper we introduce and study an associated graph Σ(G), which we call the Saxl graph of G. The vertices of Σ(G) are the points of Ω, and two vertices are adjacent if they form a base for G. This graph encodes some interesting properties of the permutation group. We investigate the connectivity of Σ(G) for a finite transitive group G, as well as its diameter, Hamiltonicity, clique and independence numbers, and we present several open problems. For instance, we conjecture that if G is a primitive group with a base of size 2, then the diameter of Σ(G) is at most 2. Using a probabilistic approach, we establish the conjecture for some families of almost simple groups. For example, the conjecture holds when G = Sn or An (with n > 12) and the point stabiliser of G is a primitive subgroup. In contrast, we can construct imprimitive groups whose Saxl graph is disconnected with arbitrarily many connected components, or connected with arbitrarily large diameter.

Copyright

Footnotes

Hide All

Supported by ARC Discovery Project DP160102323.

Footnotes

References

Hide All
[1] Babai, L. On the order of uniprimitive permutation groups. Annals of Math. 113 (1981), 553568.
[2] Bailey, R. F. and Cameron, P. J. Base size, metric dimension and other invariants of groups and graphs. Bull. London Math. Soc. 43 (2011), 209242.
[3] Blaha, K. D. Minimum bases for permutation groups: the greedy approximation. J. Algorithms 13 (1992), 297306.
[4] Bosma, W., Cannon, J. and Playoust, C. The Magma algebra system I: the user language. J. Symbolic Comput. 24 (1997), 235265.
[5] Breuer, T. The GAP Character Table Library, Version 1.2.1. GAP package, http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib, 2012.
[6] Broere, I., Döman, D. and Ridley, J. N. The clique numbers and chromatic numbers of certain Paley graphs. Quaestiones Math. 11 (1988), 9193.
[7] Burness, T. C. On base sizes for actions of finite classical groups. J. London Math. Soc. 75 (2007), 545562.
[8] Burness, T. C. and Giudici, M. Classical groups, derangements and primes. Aust. Math. Soc. Lecture Series, vol. 25 (Cambridge University Press, 2016.)
[9] Burness, T. C., Guralnick, R. M. and Saxl, J. On base sizes for symmetric groups. Bull. London Math. Soc. 43 (2011), 386391.
[10] Burness, T. C., Guralnick, R. M. and Saxl, J. Base sizes for ${\mathcal{S}}$-actions of finite classical groups. Israel J. Math. 199 (2014), 711756.
[11] Burness, T. C., Guralnick, R. M. and Saxl, J. On base sizes for algebraic groups. J. Eur. Math. Soc. (JEMS) 19 (2017), 22692341.
[12] Burness, T. C., Guralnick, R. M. and Saxl, J. Base sizes for geometric actions of finite classical groups. In preparation.
[13] Burness, T. C., Liebeck, M. W. and Shalev, A. Base sizes for simple groups and a conjecture of Cameron. Proc. London Math. Soc. 98 (2009), 116162.
[14] Burness, T. C., Liebeck, M. W. and Shalev, A. The depth of a finite simple group. Proc. Amer. Math. Soc. 146 (2018), 23432358.
[15] Burness, T. C., O'Brien, E. A. and Wilson, R. A.. Base sizes for sporadic groups. Israel J. Math. 177 (2010), 307333.
[16] Cameron, P. J. Some measures of finite groups related to permutation bases. Preprint, arxiv:1408.0968 (2014).
[17] Cameron, P. J. and Fon–Der–Flaass, D. G. Bases for permutation groups and matroids. European J. Combin. 16 (1995), 537544.
[18] Cameron, P. J. and Kantor, W. M. Random permutations: some group-theoretic aspects. Combin. Probab. Comput. 2 (1993), 257262.
[19] Dirac, G. A. Some theorems on abstract graphs. Proc. London Math. Soc. 2 (1952), 6981.
[20] Dixon, J. D. and Mortimer, B. Permutation Groups (Springer-Verlag, New York 1996).
[21] Fawcett, J. B. Bases of primitive permutation groups. Ph.D. thesis. University of Cambridge (2013).
[22] Fawcett, J. B. The base size of a primitive diagonal group. J. Algebra 375 (2013), 302321.
[23] Fawcett, J. B., Müller, J., O'Brien, E. A. and Wilson, R. A.. Regular orbits of sporadic simple groups. Preprint, arxiv:1801.04561 (2018).
[24] Fawcett, J. B., O'Brien, E. A. and Saxl, J.. Regular orbits of symmetric and alternating groups. J. Algebra 458 (2016), 2152.
[25] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.8.7 (2017), (http://www.gap-system.org).
[26] Guralnick, R. M. and Magaard, K. On the minimal degree of a primitive permutation group. J. Algebra 207 (1998), 127145.
[27] Halasi, Z. On the base size for the symmetric group acting on subsets. Studia Sci. Math. Hungar. 49 (2012), 492500.
[28] de la Harpe, P. and Weber, C.. Malnormal subgroups and Frobenius groups: basics and examples, with an appendix by Osin, D.. Confluentes Math. 6 (2014), 6576.
[29] James, J. P. Two point stabilisers of partition actions of linear groups. J. Algebra 297 (2006), 453469.
[30] James, J. P. Partition actions of symmetric groups and regular bipartite graphs. Bull. London Math. Soc. 38 (2006), 224232.
[31] James, J. P. Two point stabilisers of partition actions of symmetric, alternating and linear groups. Ph.D. thesis. University of Cambridge (2006).
[32] Jones, G. A. Paley and the Paley graphs. Preprint, arxiv:1702.00285 (2017).
[33] Liebeck, M. W., Praeger, C. E. and Saxl, J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365383.
[34] Liebeck, M. W and Saxl, J.. On point stabilizers in primitive permutation groups. Comm. Algebra 19 (1991), 27772786.
[35] Liebeck, M. W. and Shalev, A. Simple groups, permutation groups, and probability. J. Amer. Math. Soc. 12 (1999), 497520.
[36] Liebeck, M. W. and Shalev, A. On fixed points of elements in primitive permutation groups. J. Algebra 421 (2015), 438459.
[37] Lovász, L. The factorization of graphs. In: Combinatorial Structures and their Applications (Gordon and Breach, New York, 1970), 243246.
[38] Maróti, A. On the orders of primitive groups. J. Algebra 258 (2002), 631640.
[39] Müller, J., Neunhöffer, M. and Noeske, F. Orb – Methods to enumerate orbits, Version 4.7.6 (2016), (https://github.com/gap-packages/orb/).
[40] Müller, J., Neunhöffer, M. and Wilson, R. A. Enumerating big orbits and an application: B acting on the cosets of Fi 23. J. Algebra 314 (2007), 7596.
[41] Neunhöffer, M., Noeske, F., O'Brien, E. A. and Wilson, R.A.. Orbit invariants and an application to the Baby Monster. J. Algebra 341 (2011), 297305.
[42] Praeger, C. E. The inclusion problem for finite primitive permutation groups. Proc. London Math. Soc. 60 (1990), 6888.
[43] Schmid, P. The solution of the k(GV) problem. ICP Advanced Texts in Mathematics, vol. 4 (Imperial College Press, London, 2007).
[44] Seress, Á.. Permutation group algorithms. Cambridge Tracts in Mathematics, vol. 152 (Cambridge University Press, 2003).
[45] Wilson, R. A. et al. A World-Wide-Web Atlas of finite group representations. (http://brauer.maths.qmul.ac.uk/Atlas/v3/).
[46] Wilson, R. A. Maximal subgroups of sporadic groups. In: Finite simple groups: thirty years of the atlas and beyond, Contemp. Math. vol. 694 (Amer. Math. Soc., 2017), 5772.
[47] Winter, D. L. The automorphism group of an extraspecial p-group. Rocky Mountain J. Math. 2 (1972), 159168.
[48] Zassenhaus, H. Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11 (1936), 187220.

On the Saxl graph of a permutation group

  • TIMOTHY C. BURNESS (a1) and MICHAEL GIUDICI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed