Skip to main content Accessibility help

On the set of zero coefficients of a function satisfying a linear differential equation



Let K be a field of characteristic zero and suppose that f: K satisfies a recurrence of the form

\[ f(n) = \sum_{i=1}^d P_i(n) f(n-i), \]
for n sufficiently large, where P1(z),. . .,Pd(z) are polynomials in K[z]. Given that Pd(z) is a nonzero constant polynomial, we show that the set of n for which f(n) = 0 is a union of finitely many arithmetic progressions and a finite set. This generalizes the Skolem–Mahler–Lech theorem, which assumes that f(n) satisfies a linear recurrence. We discuss examples and connections to the set of zero coefficients of a power series satisfying a homogeneous linear differential equation with rational function coefficients.



Hide All
[1]Adamczewski, B. and Bell, J. P.On the set of zero coefficients of algebraic power series. Invent. Math. 187, no. 2 (2012), 343393.
[2]Allouche, J.-P. and Shallit, J.Automatic Sequences. Theory, Applications, Generalizations (Cambridge University Press, 2003).
[3]Bell, J. P.A generalised Skolem–Mahler–Lech Theorem for affine varieties. J. London Math. Soc. 73 (2006), 367379.
[4]Bell, J. P.Corrigendum to “A generalised Skolem–Mahler–Lech Theorem for affine varieties”. J. London Math. Soc. 78 (2008), 267272.
[5]Bell, J. P., Burris, S. N. and Yeats, K.Spectra and Systems of Equations. arXiv:0911.2494.
[6]Bell, J. P., Ghioca, D. and Tucker, T. J.The dynamical Mordell–Lang problem for étale maps. Amer. J. Math. 132, no. 6 (2010), 16551675.
[7]Bézivin, J.-P.Une généralisation du théorème de Skolem–Mahler–Lech. Quart. J. Math. Oxford Ser. (2). 40 (1989), no. 158, 133138.
[8]Bézivin, J.-P. and Laohakosol, V.On the theorem of Skolem–Mahler–Lech. Exposition. Math. 9 (1991), no. 1, 8996.
[9]Bousquet–Mélou, M.Walks in the quarter plane: Kreweras' algebraic model. Ann. Appl. Probab. 15 (2005), no. 2, 14511491.
[10]Chyzak, F. and Salvy, B.Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26 (1998), no. 2, 187227.
[11]Chyzak, F., Mishna, M. and Bruno, B. SalvyEffective scalar products of D-finite symmetric functions. J. Combin. Theory Ser. A 112 (2005), no. 1, 143.
[12]Derksen, H.A Skolem–Mahler–Lech theorem in positive characteristic and finite automata. Invent. Math. 168 (2007), 175224.
[13]Everest, G., van der Poorten, A., Shparlinski, Alf I. and Ward, T.Recurrence sequences. Mathematical Surveys and Monographs, 104 (Amer. Math. Soc. 2003).
[14]Evertse, J.–H., Schlickewei, H. P. and Schmidt, W. M.Linear equations in variables which lie in a multiplicative group. Ann. of Math. (2) 155 (2002), no. 3, 807836.
[15]Garoufalidis, S.G-functions and multisum versus holonomic sequences. Adv. Math. 220 (2009), no. 6, 19451955.
[16]Gessel, I.Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A 53 (1990), no. 2, 257285.
[17]Hansel, G.Une démonstration simple du théorème de Skolem–Mahler–Lech. Theoret. Comput. Sci. 43 (1986), no. 1, 9198.
[18]Lang, S.Algebraic number theory. Second edition. Graduate Texts in Mathematics, 110 (Springer-Verlag, 1994).
[19]Laohakosol, V.Some extensions of the Skolem–Mahler–Lech theorem. Exposition. Math. 7 (1989), no. 2, 137187.
[20]Lech, C.A note on recurring series. Ark. Mat. 2 (1953), 417421.
[21]Li, H. and Van Oystaeyen, F.Elimination of variables in linear solvable polynomial algebras and ∂-holonomicity. J. Algebra 234 (2000), no. 1, 101127.
[22]Mahler, K.Eine arithmetische Eigenshaft der Taylor–Koeffizienten rationaler Funktionen. Proc. Kon. Nederlandsche Akad. v. Wetenschappen 38 (1935), 5060.
[23]Mahler, K.On the Taylor coefficients of rational functions. Proc. Camb. Phil. Soc. 52 (1956), 3948.
[24]Mahler, K.Addendum to the paper “On the Taylor coefficients of rational functions". Proc. Camb. Phil. Soc. 53 (1957), 544.
[25]Mahler, K.p-adic Numbers and Their Functions, Second ed. (Cambridge University Press, Cambridge, New York, 1981).
[26]Methfessel, C.On the zeros of recurrence sequences with non-constant coefficients. Arch. Math. (Basel) 74 (2000), no. 3, 201206.
[27]van der Poorten, A. J.A proof that Euler missed . . . Apéry's proof of the irrationality of ζ(3). Math. Intelligencer 1 (1979), 195203.
[28]van der Poorten, A. J.Some facts that should be better known; especially about rational functions. Number Theory and Applications ed. Mollin, Richard A., (NATO–Advanced Study Institute, Banff, 1988), (Kluwer Academic Publishers, 1989), 497528.
[29]van der Poorten, A. J. and Tijdeman, R.On common zeros of exponential polynomials. Enseign. Math. (2) 21 (1975), no. 1, 5767.
[30]Robert, A.A course in p-adic analysis. Graduate Texts in Mathematics, 198 (Springer-Verlag, 2000).
[31]Rubel, L. A.Some research problems about algebraic differential equations. Trans. Amer. Math. Soc. 280 (1983), no. 1, 4352 (Problem 16).
[32]Skolem, T. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. C. r. 8 Congr. Scand. à Stockholm (1934), 163–188.
[33]Stanley, R.Differentiably finite power series. European J. Combin. 1 (1980), 175188.
[34]Strassman, R.Über den Wertevorrat von Potenzreihen im Gebiet der p-adischen Zahlen. J. Reine Angew. Math. 159 (1928), 13–28; 6566.
[35]Wilf, H. S. and Zeilberger, D.An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent. Math. 108 (1992), no. 3, 575633.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed