Skip to main content Accessibility help
×
×
Home

On the stability of the set of hyperbolic closed orbits of a Hamiltonian

  • MÁRIO BESSA (a1), CÉLIA FERREIRA (a2) and JORGE ROCHA (a2)
Abstract

Let H be a Hamiltonian, eH(M) ⊂ ℝ and ƐH, e a connected component of H−1({e}) without singularities. A Hamiltonian system, say a triple (H, e, ƐH, e), is Anosov if ƐH, e is uniformly hyperbolic. The Hamiltonian system (H, e, ƐH, e) is a Hamiltonian star system if all the closed orbits of ƐH, e are hyperbolic and the same holds for a connected component of −1({ẽ}), close to ƐH, e, for any Hamiltonian , in some C2-neighbourhood of H, and ẽ in some neighbourhood of e.

In this paper we show that a Hamiltonian star system, defined on a four-dimensional symplectic manifold, is Anosov. We also prove the stability conjecture for Hamiltonian systems on a four-dimensional symplectic manifold. Moreover, we prove the openness and the structural stability of Anosov Hamiltonian systems defined on a 2d-dimensional manifold, d ≥ 2.

Copyright
References
Hide All
[1]Andronov, A. and Pontrjagin, L.Systèmes grossiers. Dokl. Akad. Nauk. SSSR. 14 (1937), 247251.
[2]Anosov, D. V.Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Math. Inst. 90 (1967), 1235.
[3]Aoki, N.The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Brasil. Mat. (N.S.). 23, 1–2 (1992), 2165.
[4]Arnaud, M.-C.Un lemme de fermeture d'orbites: le “orbit closing lemma”. [An orbit closing lemma]. C. R. Acad. Sci. Paris Sér. I Math. 323, 11 (1996), 11751178.
[5]Bessa, M. and Lopes Dias, J.Generic dynamics of 4-dimensional C 2 hamiltonian systems. Commun. Math. Phys. 281 (2008), 597619.
[6]Bessa, M. and Lopes Dias, J.Hamiltonian elliptic dynamics on symplectic 4-manifolds. Proc. Amer. Math. Soc. 137 (2009), 585592.
[7]Bessa, M. and Rocha, J.Three-dimensional conservative star flows are Anosov. Disc. Cont. Dynam. Sys. A. 26, 3 (2010), 839846.
[8]Brin, M. and Stuck, G.Introduction to dynamical systems. (Cambridge University Press, 2002).
[9]Doering, C.Persistently transitive vector fields on three-dimensional manifolds. Proc. Dynam. Sys. Bifurc. Th. Pitman Res. Notes in Math. 160 (1987), 5989.
[10]Gan, S. and Wen, L.Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 164 (2006), 279315.
[11]Hayashi, S.Diffeomorphisms in F 1(M) satisfy Axiom A. Ergod. Th. Dynam. Sys. 12, 2 (1992), 233253.
[12]Hirsch, M. W., Pugh, C.C. and Shub, M.Invariant manifolds. Lecture Notes in Mathematics, 583 (Springer-Verlag, 1977).
[13]Hurewicz, W. and Wallman, H.Dimension Theory. Princeton Mathematical Series, 4 (Princeton University Press, 1941).
[14]Katok, A. and Hasselblatt, B.Introduction to the Modern Theory of Dynamical Systems, (Cambridge University Press, 1995).
[15]Mañé, R.A proof of the C 1 stability conjecture. Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161210.
[16]Mañé, R.An ergodic closing lemma. Ann. of Math. 116, 3 (1982), 503540.
[17]Oseledets, V. I.A multiplicative ergodic theorem: Lyapunov characteristic number for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.
[18]Pugh, C. and Robinson, C.The C 1 closing lemma, including Hamiltonians. Ergod. Th Dynam. Sys. 3 (1983), 261313.
[19]Robinson, C.Lectures on Hamiltonian Systems. Monografias de Matemática (IMPA, 1971).
[20]Shub, M.Global Stability of Dynamical Systems (Springer-Verlag, 1987).
[21]Tucker, W.The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328, 12 (1999), 11971202.
[22]Vivier, T. Robustly transitive 3-dimensional regular energy surfaces are Anosov. Institut de Mathématiques de Bourgogne, Dijon, Preprint 412 (2005). http://math.u-bourgogne.fr/topo/prepub/pre05.html.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed