Skip to main content Accessibility help
×
Home

Pair correlation of sequences $(\lbrace a_n \alpha \rbrace)_{n \in {\mathbb N}}$ with maximal additive energy

  • GERHARD LARCHER (a1) and WOLFGANG STOCKINGER (a1)

Abstract

We show for sequences $\left(a_{n}\right)_{n \in \mathbb N}$ of distinct positive integers with maximal order of additive energy, that the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n \in \mathbb N}$ does not have Poissonian pair correlations for any α. This result essentially sharpens a result obtained by J. Bourgain on this topic.

Copyright

References

Hide All
[1] Aichinger, I., Aistleitner, C. and Larcher, G.. On Quasi-Energy-Spectra, Pair Correlations of Sequences and Additive Combinatorics. Celebration of the 80th birthday of Ian Sloan (Dick, J., Kuo, F. Y., Woźniakowski, H., eds.). (Springer-Verlag, 2018).
[2] Aistleitner, C., Larcher, G. and Lewko, M.. Additive energy and the Hausdorff dimension of the exceptional set in metric pair correlation problems. With an appendix by Jean Bourgain. Israel J. Math. 222 (2017) No. 1, 463485.
[3] Aistleitner, C., Lachmann, T. and Pausinger, F.. Pair correlations and equidistribution. J. Number Theory, to appear, available at https://arxiv.org/abs/1612.05495.
[4] Balog, A. and Szemerédi, E.. A statistical theorem of set addition. Combinatorica 14 (1994), 263268.
[5] Freiman, G. R.. Foundations of a structural theory of set addition. Trans. Math. Monogr. 37 (Amer. Math. Soc., Providence, USA, 1973).
[6] Gowers, W. T.. A new proof of Szemerédi's theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998), 529551.
[7] Grepstad, S. and Larcher, G.. On pair correlation and discrepancy. Arch. Math. 109 (2017) 143149.
[8] Lachmann, T. and Technau, N.. On exceptional sets in the metric poissonian pair correlations problem. Submitted (2017). arXiv:1708.08599.
[9] Larcher, G.. Remark on a result of Bourgain on Poissonian pair correlation. arXiv:1711.08663 (2017).
[10] Larcher, G. and Stockinger, W.. Some negative results related to Poissonian pair correlation problems. Submitted (2018). arXiv:1803.05236.
[11] Lev, V. F.. The (Gowers–)Balog–Szemerédi theorem: an exposition: http://people.math.gatech.edu/~ecroot/8803/baloszem.pdf.
[12] Marklof, J.. The Berry–Tabor conjecture. European Congress of Mathematics, Vol. II (Barcelona, 2000), 421427. Progr. Math. 202 (Birkhäuser, Basel, 2001).
[13] Rudnick, Z. and Sarnak, P.. The pair correlation function of fractional parts of polynomials. Comm. Math. Phys. 194 (1) (1998), 6170.
[14] Rudnick, Z., Sarnak, P. and Zaharescu, A.. The distribution of spacings between the fractional parts of n 2 α. Invent. Math. 145 (1) (2001), 3757.
[15] Rudnick, Z. and Zaharescu, A.. A metric result on the pair correlation of fractional parts of sequences. Acta Arith. 89 (3) (1999), 283293.
[16] Steinerberger, S.. Localized quantitative criteria for equidistribution. Acta Arith. 180 (2017), 183199.
[17] Tao, T. and Vu, V.. Additive combinatorics. Camb. Stud. Adv. Math. vol. 105 (Cambridge University Press, Cambridge, 2006).
[18] Walker, A.. The primes are not Poissonian. arXiv:1702.07365 (2017).

Pair correlation of sequences $(\lbrace a_n \alpha \rbrace)_{n \in {\mathbb N}}$ with maximal additive energy

  • GERHARD LARCHER (a1) and WOLFGANG STOCKINGER (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed