Skip to main content
×
×
Home

A pointwise ergodic theorem for Fuchsian groups

  • ALEXANDER I. BUFETOV (a1) and CAROLINE SERIES (a2)
Abstract
Abstract

We use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.

Copyright
References
Hide All
[1]Anantharaman C. et al. Théorèmes ergodiques pour les actions de groupes. Monographie 41 de L' Enseignment Mathématique (Genève, 2010).
[2]Beardon A. An introduction to hyperbolic geometry. Ergodic Theory and Symbolic Dynamics in Hyperbolic Spaces, Bedford T., Keane M. and Series C. eds. (Oxford University Press, 1991).
[3]Birman J. and Series C. Dehn's algorithm revisited, with application to simple curves on surfaces. Combinatorial Group Theory and Topology, Gersten S. and Stallings J. eds. Ann. of Math. Studies III (Princeton University Press, 1987), 451478.
[4]Bowen L.Invariant measures on the space of horofunctions of a word hyperbolic group. Ergodic Theory Dynam. Syst. 30 (2010), 97129.
[5]Bowen R. and Series C.Markov maps associated with Fuchsian groups. Inst. Hautes Études Sci. Pubi. Math. 50 (1979), 153170.
[6]Bufetov A. I.Convergence of spherical averages for actions of free groups. Ann. of Math. (2), 155 (2002), 929944.
[7]Bufetov A. I.Markov averaging and ergodic theorems for several operators. Topology, ergodic theory, real algebraic geometry, 3950, Amer. Math. Soc. Transl. Ser. 2 202 (Amer. Math. Soc., 2001).
[8]Fujiwara K. and Nevo A.Maximal and pointwise ergodic theorems for word-hyperbolic groups. Ergodic Theory Dynam. Syst. 18 (1998), 843858.
[9]Gorodnik A. and Nevo A.The ergodic theory of lattice subgroups. Ann. of Math. Stud. 172 (Princeton University Press, 2010).
[10]Grigorchuk R. I.Ergodic theorems for the actions of a free group and a free semigroup. (Russian) Mat. Zametki 65 (1999), 779783 (English trans: Math. Notes 65 (1999), 654–657).
[11]Grigorchuk R. I.An ergodic theorem for actions of a free semigroup. (Russian) Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 119133 (English trans: Proc. Steklov Inst. Math. 2000 231, 113–127).
[12]Margulis G. A., Nevo A. and Stein E. M.Analogs of Wiener's ergodic theorems for semisimple Lie groups. II. Duke Math. J. 103 (2000), 233259.
[13]Nevo A.Harmonic analysis and pointwise ergodic theorems for noncommuting transformations. J. Amer. Math. Soc. 7 (1994), 875902.
[14]Nevo A. Pointwise ergodic theorems for actions of groups. Handbook of dynamical systems. Vol. 1B, 871982 (Elsevier, Amsterdam, 2006).
[15]Nevo A. and Stein E. M.A generalization of Birkhoff's pointwise ergodic theorem. Acta Math. 173 (1994), 135154.
[16]Nevo A. and Stein E. M.Analogs of Wiener's ergodic theorems for semisimple groups. I. Ann. of Math. 2 145 (1997), 565595.
[17]Series C.The infinite word problem and limit sets in Fuchsian groups. Ergodic Theory Dynam. Syst. 1 (1981), 337360.
[18]Series C.Martin boundaries of random walks on Fuchsian groups. Israel J. Math. 44 (1983), 221240.
[19]Series C.Geometrical Markov coding of geodesics on surfaces of constant negative curvature. Ergodic Theory Dynam. Syst. 6 (1986), 601625.
[20]Series C. Geometrical methods of symbolic coding. Ergodic Theory and Symbolic Dynamics in Hyperbolic Spaces, Bedford T., Keane M. and Series C. eds. (Oxford University Press, 1991).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.