[1]Bourbaki, N.Intégration (Hermann, Paris, 1963, Chap. 7 et 8).
[2]Bredon, G.Introduction to Compact Transformation Groups (Academic Press, New York, 1972).
[3]Diaconis, P.Random walks on groups: characters and geometry, in: Groups St. Andrews 2001 in Oxford, Vol. I, London Math. Soc. Lecture Note Ser. 304 (Cambridge University Press, 2003), pp. 120–142.
[4]Erdős, P. and Túran, P.On some problems of statistical group theory. Acta Math. Acad. Sci. Hung. 19 (1968), 413–435.
[5]Erfanian, A. and R.Kamyabi–Gol. On the mutually commuting n-tuples in compact groups. Int. J. Algebra 1 (2007), 251–262.
[6]Erfanian, A. and Rezaei, R.On the commutativity degree of compact groups. Arch. Math. (Basel) 93 (2009), 201–212.
[7]Erfanian, A. and Russo, F.Probability of mutually commuting n-tuples in some classes of compact groups. Bull. Iran. Math. Soc. 34 (2008), 27–37.
[8]Gustafson, W. H.What is the probability that two group elements commute? Amer. Math. Monthly 80 (1973), 1031–1304.
[9]Hewitt, E. and Ross, K.Abstract Harmonic Analysis. Vol. I (Springer, Berlin, 1963).
[10]Hofmann, K. H. and Morris, S. A.The Structure of Compact Groups (de Gruyter, Berlin, Second Edition, 2006).
[11]Hofmann, K. H. and Morris, S. A. The Lie theory of connected Pro-Lie groups. Eur. Math. Soc. Publ. House 2007.
[12]Hofmann, K. H. and Morris, S. A.Elements of Compact Semigroups (Charles E. Merill, Columbus, Ohio, 1966).
[13]Lescot, P.Isoclinism classes and commutativity degrees of finite groups. J. Algebra 177 (1985), 847–869.
[14]Lévai, L. and Pyber, L.Profinite groups with many commuting pairs or involutions. Arch. Math. (Basel) 75 (2000), 1–7.
[15]Neumann, B. H.On a problem of P. Erdős. J. Aust. Math. Soc. Ser. A 21 (1976), 467–472.
[16]Neumann, P. M.Two combinatorial problems in group theory. Bull. London Math. Soc. 21 (1989), 456–458.
[17]Shalev, A.Profinite groups with restricted centralizers. Proc. Amer. Math. Soc. 122 (1994), 1279–1284.
[18]tom Dieck, T.Transformation Groups (de Gruyter, Berlin, 1987).