Skip to main content
×
×
Home

Projection theorems for box and packing dimensions

  • K. J. Falconer (a1) and J. D. Howroyd (a1)
Abstract
Abstract

We show that if E is an analytic subset of ℝn then

for almost all m–dimensional subspaces V of ℝn, where projvE is the orthogonal projection of E onto V and dimp denotes packing dimension. The same inequality holds for lower and upper box counting dimensions, and these inequalities are the best possible ones.

Copyright
References
Hide All
[1]Falconer K. J.. Fractal geometry - mathematical foundations and applications (John Wiley, 1990).
[2]Falconer K. J.. Hausdorff dimension and the exceptional set of projections. Mathematika 29 (1982), 109115.
[3]Haase H.. Non-σ-nnite sets for packing measure. Mathematika 33 (1986), 129136.
[4]Hu X. and Taylor S. J.. Fractal properties of products and projections of measures in ℝd. Math. Proc. Cambridge Philos. Soc. 115 (1994), 527544.
[5]Järvenpää M.. On the upper Minkowski dimension, the packing dimension, and orthogonal projections. Annales Acad. Sci. Fen. A Dissertationes 99 (1994).
[6]Kaufman R.. On Hausdorff dimension of projections. Mathematika 15 (1968), 153155.
[7]Marstrand J. M.. Some fundamental properties of plane sets of fractional dimension. Proc. London Math. Soc. (3) 4 (1954), 257302.
[8]Mattila P.. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Acad. Sci. Fen. A 1 (1975), 227244.
[9]Mattila P.. Geometry of sets and measures in Euclidean spaces (Cambridge University Press, 1995).
[10]Tricot C.. Rarefaction indices. Mathematika 27 (1980), 4657.
[11]Tricot C.. Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc. 91 (1982), 5774.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.