No CrossRef data available.
Published online by Cambridge University Press: 19 August 2025
Let G be a locally compact, Hausdorff, second countable groupoid and A be a separable,  $C_0(G^{(0)})$-nuclear, G-
$C_0(G^{(0)})$-nuclear, G- $C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient
$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient  $C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.
$C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.
 $C^*$
-algebras. J. Funct. Anal. 13 (1973), 277–301.10.1016/0022-1236(73)90036-0CrossRefGoogle Scholar
$C^*$
-algebras. J. Funct. Anal. 13 (1973), 277–301.10.1016/0022-1236(73)90036-0CrossRefGoogle Scholar $C^*$
-algebras. Duke Math. J. 44 (1977), 329–355.10.1215/S0012-7094-77-04414-3CrossRefGoogle Scholar
$C^*$
-algebras. Duke Math. J. 44 (1977), 329–355.10.1215/S0012-7094-77-04414-3CrossRefGoogle Scholar $C^*$
-algèbres de Hopf. Bull. Soc. Math. France 124 (1996), 141–215.10.24033/bsmf.2278CrossRefGoogle Scholar
$C^*$
-algèbres de Hopf. Bull. Soc. Math. France 124 (1996), 141–215.10.24033/bsmf.2278CrossRefGoogle Scholar $C^*$
-algebras. J. Reine Angew. Math. 489 (1997), 133–149.Google Scholar
$C^*$
-algebras. J. Reine Angew. Math. 489 (1997), 133–149.Google Scholar $C^*$
-algebras and K-homology. Ann. of Math. (2) 105 (1977), 265–324.10.2307/1970999CrossRefGoogle Scholar
$C^*$
-algebras and K-homology. Ann. of Math. (2) 105 (1977), 265–324.10.2307/1970999CrossRefGoogle Scholar $C^*$
-algebras. Ann. of Math.(2) 104 (1976), 585–609.10.2307/1970968CrossRefGoogle Scholar
$C^*$
-algebras. Ann. of Math.(2) 104 (1976), 585–609.10.2307/1970968CrossRefGoogle Scholar $C_0(X)$
-actions. J. Funct. Anal. 158 (1998), 113–151.10.1006/jfan.1998.3295CrossRefGoogle Scholar
$C_0(X)$
-actions. J. Funct. Anal. 158 (1998), 113–151.10.1006/jfan.1998.3295CrossRefGoogle Scholar $\Pi$
-algèbre et suite spectrale en K-théorie bivariante. K-Theory 5 (1991), 71–96.10.1007/BF00538880CrossRefGoogle Scholar
$\Pi$
-algèbre et suite spectrale en K-théorie bivariante. K-Theory 5 (1991), 71–96.10.1007/BF00538880CrossRefGoogle Scholar $C_{0}(X)$
-algebras, stability and strongly self-absorbing
$C_{0}(X)$
-algebras, stability and strongly self-absorbing 
 $C^*$
-algebras. Math. Ann. 339 (2007), 695–732.10.1007/s00208-007-0129-8CrossRefGoogle Scholar
$C^*$
-algebras. Math. Ann. 339 (2007), 695–732.10.1007/s00208-007-0129-8CrossRefGoogle Scholar $C^{\ast}$
-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571–636, 719.Google Scholar
$C^{\ast}$
-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571–636, 719.Google Scholar $C^*$
-algebras (Münster, 1999) (Springer, Berlin.2000), pp. 92–141.Google Scholar
$C^*$
-algebras (Münster, 1999) (Springer, Berlin.2000), pp. 92–141.Google Scholar $C^*$
-algebras. Math. Ann. 303 (1995), 677–697.10.1007/BF01461011CrossRefGoogle Scholar
$C^*$
-algebras. Math. Ann. 303 (1995), 677–697.10.1007/BF01461011CrossRefGoogle Scholar $C^*$
-algebras over topological spaces: the bootstrap class. Münster J. Math. 2 (2009), 215–252.Google Scholar
$C^*$
-algebras over topological spaces: the bootstrap class. Münster J. Math. 2 (2009), 215–252.Google Scholar $C^*$
-algebras. J. Funct. Anal. 209 (2004), 247–292.Google Scholar
$C^*$
-algebras. J. Funct. Anal. 209 (2004), 247–292.Google Scholar $C^*$
-algebras and crossed products by certain diagonal actions. Trans. Amer. Math. Soc. 287 (1985), 755–777.Google Scholar
$C^*$
-algebras and crossed products by certain diagonal actions. Trans. Amer. Math. Soc. 287 (1985), 755–777.Google Scholar $C^*$
-algebras. Lecture Notes in Math. vol. 793 (Springer, Berlin, 1980).10.1007/BFb0091072CrossRefGoogle Scholar
$C^*$
-algebras. Lecture Notes in Math. vol. 793 (Springer, Berlin, 1980).10.1007/BFb0091072CrossRefGoogle Scholar $C^*$
-algebras coming from group cocycles and actions. Math. Ann. 283 (1989), 631–643.10.1007/BF01442857CrossRefGoogle Scholar
$C^*$
-algebras coming from group cocycles and actions. Math. Ann. 283 (1989), 631–643.10.1007/BF01442857CrossRefGoogle Scholar $\mathcal{O}_2$
-absorption theorem for exact groups. Compositio. Math. 157 (2021), 1492–1506.Google Scholar
$\mathcal{O}_2$
-absorption theorem for exact groups. Compositio. Math. 157 (2021), 1492–1506.Google Scholar $C^\ast$
-dynamical systems, III. Adv. Math. 316 (2017), 356–380.10.1016/j.aim.2017.06.008CrossRefGoogle Scholar
$C^\ast$
-dynamical systems, III. Adv. Math. 316 (2017), 356–380.10.1016/j.aim.2017.06.008CrossRefGoogle Scholar $C^*$
-dynamical systems. Trans. Amer. Math. Soc. 370 (2018), 99–130.Google Scholar
$C^*$
-dynamical systems. Trans. Amer. Math. Soc. 370 (2018), 99–130.Google Scholar $C^*$
-dynamical systems. II. J. Noncommutative. Geom. 12 (2018), 369–406.Google Scholar
$C^*$
-dynamical systems. II. J. Noncommutative. Geom. 12 (2018), 369–406.Google Scholar $C^*$
-extensions. K-Theory 19 (2000), 219–249.10.1023/A:1007853018475CrossRefGoogle Scholar
$C^*$
-extensions. K-Theory 19 (2000), 219–249.10.1023/A:1007853018475CrossRefGoogle Scholar $C^{*}$
-algebras. Ann. of Math.(2) 185 (2017), 229–284.10.4007/annals.2017.185.1.4CrossRefGoogle Scholar
$C^{*}$
-algebras. Ann. of Math.(2) 185 (2017), 229–284.10.4007/annals.2017.185.1.4CrossRefGoogle Scholar $C{^\ast}$
-algebras. Math. Surveys Monogr. vol. 134 (American Mathematical Society, Providence, RI, 2007).Google Scholar
$C{^\ast}$
-algebras. Math. Surveys Monogr. vol. 134 (American Mathematical Society, Providence, RI, 2007).Google Scholar