Skip to main content
×
Home

Quaternionic analysis

  • A. Sudbery (a1)
Abstract

The richness of the theory of functions over the complex field makes it natural to look for a similar theory for the only other non-trivial real associative division algebra, namely the quaternions. Such a theory exists and is quite far-reaching, yet it seems to be little known. It was not developed until nearly a century after Hamilton's discovery of quaternions. Hamilton himself (1) and his principal followers and expositors, Tait(2) and Joly(3), only developed the theory of functions of a quaternion variable as far as it could be taken by the general methods of the theory of functions of several real variables (the basic ideas of which appeared in their modern form for the first time in Hamilton's work on quaternions). They did not delimit a special class of regular functions among quaternion-valued functions of a quaternion variable, analogous to the regular functions of a complex variable.

Copyright
References
Hide All
(1)Hamilton W. R.Elements of quaternions (London, Longmans Green, 1866).
(2)Tait P. G.An elementary treatise on quaternions (Cambridge University Press, 1867).
(3)Joly C. J.A manual of quaternions (London, Macmillan, 1905).
(4)Fueter R.Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comment. Math. Helv. 7 (1935), 307330.
(5)Fueter R.Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 8 (1936), 371378.
(6)Haefeli H.Hyperkomplexe Differentiate. Comment. Math. Helv. 20 (1947), 382420.
(7)Deavours C. A.The quaternion calculus. Amer. Math. Monthly 80 (1973), 9951008.
(8)Schuler B.Zur Theorie der regulären Funktionen einer Quaternionen-Variablen. Comment. Math. Helv. 10 (1937), 327342.
(9)Fueter R.Die Singularitäten der eindeutigen regulären Funktionen einer Quaternionen-variablen. Comment. Math. Helv. 9 (1937), 320335.
(10)Porteous I. R.Topological geometry (London, Van Nostrand Reinhold, 1969).
(11)Cartan H.Elementary theory of analytic functions of one or several complex variables (London, Addison-Wesley, 1963).
(12)Hervé M.Several complex variables (Oxford University Press, 1963).
(13)Heins M.Complex function theory (London, Academic Press, 1968).
(14)Titchmarsh E. C.The theory of functions, 2nd ed. (Oxford University Press, 1939).
(15)Cullen C. G.An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32 (1965), 139148.
(16)Schouten J. A.Ricci-calculus, 2nd ed. (Berlin, Springer-Verlag, 1954).
(17)Sugiura M.Unitary representations and harmonic analysis (London, Wiley, 1975).
(18)Mccarthy P. J. and Sudbery A.Harmonic analysis of generalised vector functions, generalised spin-weighted functions and induced representations. J. Phys. A 10 (1977), 331338.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 502 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.