[1] Ahlgren, S. Gaussian hypergeometric series and combinatorial congruences. In Symbolic computation, number theory, special functions, physics and combinatorics. Dev. Math. **4** (Kluwer Academic Publisher, Dordrecht, 2001), pp. 1–12.

[2] Ahlgren, S. The points of a certain fivefold over finite fields and the twelfth power of the eta function. Finite Fields Appl. 8 (2002), 18–33.

[3] Ahlgren, S. and Ono, K. A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518 (2000), 187–212.

[4] Amdeberhan, T. and Tauraso, R. Supercongruences for the Almkvist–Zudilin numbers. Acta Arith. 173 (2016), 255–268.

[5] Almkvist, G., van Enckevort, C., van Straten, D. and Zudilin, W. Tables of Calabi–Yau equations. Preprint (2010), arXiv:math/0507430v2

[6] Aspvall, B. and Liang, F. The dinner table problem. Technical Report STAN-CS-80-829, Computer Science Department, Stanford University, Stanford, California, 1980.

[7] Beukers, F. A note on the irrationality of ζ(2) and ζ(3). Bull. London Math. Soc. 11 (1979), 268–272.

[8] Beukers, F. Some congruences for the Apéry numbers. J. Number Theory 21 (1985), 141–155.

[9] Beukers, F. Another congruence for the Apéry numbers. J. Number Theory 25 (1987), 201–210.

[10] Bogner, C. and Brown, F. Feynman integrals and iterated integrals on moduli spaces of curves of genus zero. Commun. Number Theory Phys. 9 (2015), 189–238.

[11] Broedel, J., Schlotterer, O. and Stieberger, S. Polylogarithms, multiple zeta values and superstring amplitudes. Fortschr. Phys. 61 (2013), 812–870.

[12] Brown, F. Multiple zeta values and periods of moduli spaces . Ann. Sci. Éc. Norm. Supér (4) 42 (2009), 371–489.

[13] Brown, F. Irrationality proofs for zeta values, moduli spaces and dinner parties. Mosc. J. Comb. Number Theory 6 (2016), 102–165.

[14] Brown, F., Carr, S. and Schneps, L. The algebra of cell-zeta values. Compos. Math. 146 (2010), 731–771.

[15] Chan, H. H., Cooper, S. and Sica, F. Congruences satisfied by Apéry-like numbers. Int. J. Number Theory 6 (2010), 89–97.

[16] Cooper, S. Sporadic sequences, modular forms and new series for 1/π. Ramanujan J. 29 (2012), 163–183.

[17] Coster, M. Supercongruences. PhD. thesis, Universiteit Leiden (1988).

[18] Dupont, C. Odd zeta motive and linear forms in odd zeta values. With a joint appendix with Don Zagier. Compos. Math. 154 (2018), 342–379.

[19] Frechette, S., Ono, K. and Papanikolas, M. Gaussian hypergeometric functions and traces of Hecke operators. Int. Math. Res. Notices 2004, 3233–3262.

[20] Gessel, I. Some congruences for Apéry numbers. J. Number Theory 14 (1982), 362–368.

[21] Golyshev, V. V. and Zagier, D. Proof of the gamma conjecture for Fano 3-folds of Picard rank 1. Izv. Math. 80 (2016), 24–49.

[22] Goncharov, A. B. and Manin, Y. I. Multiple ζ-motives and moduli spaces . Compos. Math. 140 (2004), 1–14.

[23] Greene, J. Hypergeometric functions over finite fields. Trans. Amer. Math. Soc. 301 (1987), 77–101.

[24] Hardy, G. H. and Wright, E. M. An introduction to the theory of numbers. Fifth edition. (The Clarendon Press, Oxford University Press, New York, 1979).

[25] Kalita, G. and Chetry, A. Congruences for generalised Apéry numbers and Gaussian hypergeometric series. Res. Number Theory 3 (2017), Art. 5, 15 pp.

[26] Koike, M. Orthogonal matrices obtained from hypergeometric series over finite fields and elliptic curves over finite fields. Hiroshima Math. J. 25 (1995), 43–52.

[27] Koutschan, C. Advanced Applications of the Holonomic Systems Approach. PhD. thesis. RISC, Johannes Kepler University, Linz, Austria (2009).

[28] Lairez, P. Computing periods of rational integrals. Math. Comp. 85 (2016), 1719–1752.

[29] Loh, P. and Rhodes, R. *p*-adic and combinatorial properties of modular form coefficients. Int. J. Number Theory 2 (2006), 305–328.

[30] Ono, K. Values of Gaussian hypergeometric series. Trans. Amer. Math. Soc. 350 (1998), 1205–1223.

[31] Osburn, R. and Sahu, B. Congruences via modular forms. Proc. Amer. Math. Soc. 139 (2011), 2375–2381.

[32] Osburn, R. and Sahu, B. Supercongruences for Apéry-like numbers. Adv. in Appl. Math. 47 (2011), 631–638.

[33] Osburn, R. and Sahu, B. A supercongruence for generalised Domb numbers. Funct. Approx. Comment. Math. 48 (2013), 29–36.

[34] Osburn, R., Sahu, B. and Straub, A. Supercongruences for sporadic sequences. Proc. Edinb. Math. Soc. (2) 59 (2016), 503–518.

[35] Osburn, R. and Schneider, C. Gaussian hypergeometric series and supercongruences. Math. Comp. 78 (2009), 275–292.

[36] Osburn, R. and Straub, A. Interpolated sequences and critical $L$-values of modular forms. Preprint (2018), arXiv:1806.05207

[37] Panzer, E. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Comput. Phys. Commun. 188 (2015), 148–166.

[38] Poulet, P. Permutations. L'Intermédiaire des Mathématiciens 26 (1919), 117–121.

[39] Ribet, K. Galois representations attached to eigenforms with Nebentypus. In Modular functions of one variable, V, Lecture Notes in Math. vol. 601 (Springer, 1977), pp. 17–51.

[40] Roberts, D.P., Rodriquez–Villegas, F. and Watkins, M. Hypergeometric motives. “Preprint” (2017).

[41] Schlotterer, O. and Stieberger, S. Motivic multiple zeta values and superstring amplitudes. J. Phys. A 46 (2013), 475401, 37 pp.

[42] Stienstra, J. and Beukers, F. On the Picard–Fuchs equation and the formal Brauer group of certain elliptic *K*3-surfaces. Math. Ann. 271 (1985), 269–304.

[43] Straub, A. Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory 8 (2014), 1985–2008.