Skip to main content Accessibility help

Singularity theory and equivariant bifurcation problems with parameter symmetry

  • Jacques-Élie Furter (a1), Angela Maria Sitta (a2) and Ian Stewart (a3)

The study of equivariant bifurcation problems via singularity theory (Golubitsky and Schaeffer[8], Golubitsky, Stewart and Schaeffer[9]) has been mainly concerned with models exhibiting spontaneous symmetry-breaking. The solutions of such bifurcation problems lose symmetry as the parameters vary, but the equations that they satisfy retain the same symmetry throughout.

Hide All
[1]Bridges, T. J. and Furter, J. E.. Singularity theory and equivariant symplectic maps. Lecture Notes in Math. 1558 (Springer-Verlag, 1993).
[2]Chillingworth, D. R. J.. Bifurcation from an orbit of symmetry. In Singularities and dynamical systems (ed. Pnevmatikos, S. N.), 258294 (North-Holland, 1986).
[3]Damon, J.. The Unfolding and Deteminacy Theorems for subgroups of and . Memoirs of the American Mathematical Society 50 no. 306, 1984.
[4]Furter, J. E., Sitta, A. M. and Stewart, I.. Algebraic path formulation for equivariant bifurcation problems, preprint, 1995.
[5]Gaffney, T.. Some new results in the classification theory of bifurcation problems. In Multiparameter bifurcation theory. Contemporary Mathematics 56 (Amer. Math. Soc., 1986).
[6]Golubitsky, M. and Roberts, M.. A classification of degenerate Hopf bifurcations withO(2) symmetry. J. Diff. Eg. 69 (1987), 216264.
[7]Golubitsky, M. and Schaeffer, D. G.. A theory for imperfect bifurcation theory via singularity theory. Commun. Pure Appl. Math. 32 (1979), 2198.
[8]Golubitsky, M. and Schaeffer, D. G.. Singularities and groups in bifurcation theory, vol. I, Applied Math. Sci. 51 (Springer-Verlag, 1985).
[9]Golubitsky, M., Stewart, I. and Schaeffer, D. G.. Singularities and groups in bifurcation theory, vol. II, Applied Math. Sci. 69 (Springer-Verlag, 1988).
[10]Lari-Lavassani, A.. Multiparameter bifurcation with symmetry via singularity theory, Ph.D. Thesis (Ohio State U., 1990).
[11]Mono, D. and Montaldi, J.. Deformations of maps on complete intersections, Damon's equivalence, and bifurcations, preprint, U. of Warwick, 1991.
[12]Peters, M.. Classification of two-parameter bifurcations, Ph.D. Thesis, U. of Warwick, 1991.
[13]Schwartz, G.. Smooth functions invariant under the action of a compact Lie group. Topology 14 (1975), 6368.
[14]Sitta, A. M.. Singularity theory and equivariant bifurcation problems with parameter symmetry, PhD Thesis, U. of Warwick and USP-Sao Carlos, 1993.
[15]Vanderbauwhede, A.. Stability of bifurcating equilibria and the principle of reduced stability; in Bifurcation theory and applications, Montecatini 1983 (ed.Salvadori, L.), Lectures Notes in Math. 1057 (Springer-Verlag, 1984), 209233.
[16]Vanderbauwhede, A.. Local bifurcation and symmetry. Research Notes in Math. 75 (Pitman, 1982).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed