[1] Ancochea, G. On semi-automorphisms of division algebras. Ann. Math. 48 (1947), 147–154.

[2] Apazoglou, M. and Peralta, A. M. Linear isometries between real *JB**-triples and *C**-algebras. Quart. J. Math. 65 (2014), 485–503.

[3] Ara, P. and Mathieu, M. Local Multipliers of *C**-algebras (Springer–Verlag, London 2002).

[4] Aupetit, B. The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras. J. Funct. Anal. 47 (1982), 1–6.

[5] Barton, T. J., Dang, T. and Horn, G. Normal representations of Banach Jordan triple systems. Proc. Amer. Math. Soc. 102 (1988), 551–555.

[6] Baxter, W. E. and Martindale, W. S. III Jordan homomorphisms of semiprime rings. J. Algebra 56 (1979), 457–471.

[7] Beidar, K. I., Martindale, W. S. 3rd and Mikhalev, A. V. Rings with Generalized Identities (Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996).

[8] Brešar, M. Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218–228.

[9] Brešar, M. Jordan homomorphisms revisited. Math. Proc. Camb. Phil. Soc. 144 (2008), 317–328.

[10] Burgos, M., Fernández-Polo, F. J., Francisco, J., Garcés, J. J. and Peralta, A. M. 2-local triple homomorphisms on von Neumann algebras and *JBW**-triples. J. Math. Anal. Appl. 426 (2015), 43–63.

[11] Busby, R. C. Double centralisers and extensions of *C**-algebras. Trans. Amer. Math. Soc. 132 (1968), 79–99.

[12] Chernoff, P. R. Representations, automorphisms and derivations of some operator algebras. J. Funct. Anal. 12 (1973), 275–289.

[13] Chu, C.–H. and Mackey, M. Isometries between *JB**-triples. Math. Z. 251 (2005), 615–633.

[14] Chu, C.–H., Dand, T., Russo, B. and Ventura, B. Surjective isometries of real *C**-algebras. J. London Math. Soc. 47 (1991), 97–118.

[15] Cohen, P. J. Factorisations in group algebras. Duke Math. 26 (1959), 199–205.

[16] Dales, H. G. Banach Algebras and Automatic Continuity. London Math. Soc. Monogr. **24** (Oxford Sci. Pub., Clarendon Press, Oxford Univ. Press, New York 2000).

[17] Dang, T., Friedman, Y. and Russo, B. Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup. Rocky Mountain J. Math. 20 (1990), 409–428.

[18] Garcés, J. J. and A. Peralta, M. Generalised triple homomorphisms and derivations. Canad. J. Math. 65 (2013), 783–807.

[19] Herstein, I. N. Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331–341.

[20] Herstein, I. N. Topics in Ring Theory (University of Chicago Press, Chicago 1969).

[21] Jacobson, N. and Rickart, C. Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479–502.

[22] Johnson, B. E. The uniqueness of the (complete) norm topology. Bull. Amer. Math. Soc. 73 (1967), 537–539.

[23] Johnson, B. E. Continuity of generalised homomorphisms. Bull. London Math. Soc. 19 (1987), 67–71.

[24] Kadison, R. V. Isometries of operator algebras. Ann. Math. 54 (1951), 325–338.

[25] Kaup, W. Algebraic characterization of symmetric complex Banach manifolds. Math. Ann. 228 (1977), 39–64.

[26] Kaup, W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183 (1983), 503–529.

[27] Kharchenko, V. K. Automorphisms and Derivations of Associative Rings (Kluwer Academic Publisher, Dordrecht/Boston/London 1991).

[28] Lin, Y.–F. and Mathieu, M. Jordan isomorphism of purely infinite *C**-algebras. Quart. J. Math. 58 (2007), 249–253.

[29] Liu, C.–K. and Shiue, W.–K. Generalised Jordan triple (θ,φ)-derivations on semi-prime rings. Taiwanese J. Math. 11 (2007), 1397–1406.

[30] Liu, C.–K., Chen, H.–Y. and Liau, P.–K. Generalised skew derivations with nilpotent values on left ideals of rings and Banach algebras. Linear Multilinear Algebra 62 (2014), 453–465.

[31] Liu, C.–K. The structure of triple derivations on semisimple Banach *-algebras. Quart. J. Math. 68 (2017), 759–779.

[32] Lu, F. Jordan isomorphisms of nest algebras. Proc. Amer. Math. Soc. 131 (2003), 147–154.

[33] Martindale, W. S. III Jordan homomorphisms onto nondegenerate Jordan algebras. J. Algebra 133 (1990), 500–511.

[34] McCrimmon, K. The radical of a Jordan algebra. Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671–678.

[35] McCrimmon, K. The Zelmanov approach to Jordan homomorphisms of associative algebras. J. Algebra 123 (1989), 457–477.

[36] Mackey, M. Local derivations on Jordan triples. Bull. Lond. Math. Soc. 45 (2013), 811–824.

[37] Molnár, L. and Zalar, B. On automatic surjectivity of Jordan homomorphisms. Acta Sci. Math. (Szeged) 61 (1995), 413–424.

[38] Molnár, L. On isomorphisms of standard operator algebras. Studia Math. 142 (2000), 295–302.

[39] Smiley, M. F. Jordan homomorphisms onto prime rings. Trans. Amer. Math. Soc. 84 (1957), 426–429.

[40] Sinclair, A. M. Jordan homomorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc. 24 (1970), 209–214.

[41] Sinclair, A. M. Automatic continuity of linear operators. London Math. Soc. Lecture Note Ser. **21** (Cambridge University Press, Cambridge/New York 1976.

[42] Størmer, E. On the Jordan structure of *C**-algebras. Trans. Amer. Math. Soc. 120 (1965), 438–447.