Skip to main content Accessibility help

The structure of triple homomorphisms onto prime algebras

  • CHENG–KAI LIU (a1)


Triple homomorphisms on C*-algebras and JB*-triples have been studied in the literature. From the viewpoint of associative algebras, we characterise the structure of triple homomorphisms from an arbitrary ⋆-algebra onto a prime *-algebra. As an application, we prove that every triple homomorphism from a Banach ⋆-algebra onto a prime semisimple idempotent Banach *-algebra is continuous. The analogous results for prime C*-algebras and standard operator *-algebras on Hilbert spaces are also described.



Hide All
[1] Ancochea, G. On semi-automorphisms of division algebras. Ann. Math. 48 (1947), 147154.
[2] Apazoglou, M. and Peralta, A. M. Linear isometries between real JB*-triples and C*-algebras. Quart. J. Math. 65 (2014), 485503.
[3] Ara, P. and Mathieu, M. Local Multipliers of C*-algebras (Springer–Verlag, London 2002).
[4] Aupetit, B. The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras. J. Funct. Anal. 47 (1982), 16.
[5] Barton, T. J., Dang, T. and Horn, G. Normal representations of Banach Jordan triple systems. Proc. Amer. Math. Soc. 102 (1988), 551555.
[6] Baxter, W. E. and Martindale, W. S. III Jordan homomorphisms of semiprime rings. J. Algebra 56 (1979), 457471.
[7] Beidar, K. I., Martindale, W. S. 3rd and Mikhalev, A. V. Rings with Generalized Identities (Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996).
[8] Brešar, M. Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218228.
[9] Brešar, M. Jordan homomorphisms revisited. Math. Proc. Camb. Phil. Soc. 144 (2008), 317328.
[10] Burgos, M., Fernández-Polo, F. J., Francisco, J., Garcés, J. J. and Peralta, A. M. 2-local triple homomorphisms on von Neumann algebras and JBW*-triples. J. Math. Anal. Appl. 426 (2015), 4363.
[11] Busby, R. C. Double centralisers and extensions of C*-algebras. Trans. Amer. Math. Soc. 132 (1968), 7999.
[12] Chernoff, P. R. Representations, automorphisms and derivations of some operator algebras. J. Funct. Anal. 12 (1973), 275289.
[13] Chu, C.–H. and Mackey, M. Isometries between JB*-triples. Math. Z. 251 (2005), 615633.
[14] Chu, C.–H., Dand, T., Russo, B. and Ventura, B. Surjective isometries of real C*-algebras. J. London Math. Soc. 47 (1991), 97118.
[15] Cohen, P. J. Factorisations in group algebras. Duke Math. 26 (1959), 199205.
[16] Dales, H. G. Banach Algebras and Automatic Continuity. London Math. Soc. Monogr. 24 (Oxford Sci. Pub., Clarendon Press, Oxford Univ. Press, New York 2000).
[17] Dang, T., Friedman, Y. and Russo, B. Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup. Rocky Mountain J. Math. 20 (1990), 409428.
[18] Garcés, J. J. and A. Peralta, M. Generalised triple homomorphisms and derivations. Canad. J. Math. 65 (2013), 783807.
[19] Herstein, I. N. Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331341.
[20] Herstein, I. N. Topics in Ring Theory (University of Chicago Press, Chicago 1969).
[21] Jacobson, N. and Rickart, C. Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479502.
[22] Johnson, B. E. The uniqueness of the (complete) norm topology. Bull. Amer. Math. Soc. 73 (1967), 537539.
[23] Johnson, B. E. Continuity of generalised homomorphisms. Bull. London Math. Soc. 19 (1987), 6771.
[24] Kadison, R. V. Isometries of operator algebras. Ann. Math. 54 (1951), 325338.
[25] Kaup, W. Algebraic characterization of symmetric complex Banach manifolds. Math. Ann. 228 (1977), 3964.
[26] Kaup, W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183 (1983), 503529.
[27] Kharchenko, V. K. Automorphisms and Derivations of Associative Rings (Kluwer Academic Publisher, Dordrecht/Boston/London 1991).
[28] Lin, Y.–F. and Mathieu, M. Jordan isomorphism of purely infinite C*-algebras. Quart. J. Math. 58 (2007), 249253.
[29] Liu, C.–K. and Shiue, W.–K. Generalised Jordan triple (θ,φ)-derivations on semi-prime rings. Taiwanese J. Math. 11 (2007), 13971406.
[30] Liu, C.–K., Chen, H.–Y. and Liau, P.–K. Generalised skew derivations with nilpotent values on left ideals of rings and Banach algebras. Linear Multilinear Algebra 62 (2014), 453465.
[31] Liu, C.–K. The structure of triple derivations on semisimple Banach *-algebras. Quart. J. Math. 68 (2017), 759779.
[32] Lu, F. Jordan isomorphisms of nest algebras. Proc. Amer. Math. Soc. 131 (2003), 147154.
[33] Martindale, W. S. III Jordan homomorphisms onto nondegenerate Jordan algebras. J. Algebra 133 (1990), 500511.
[34] McCrimmon, K. The radical of a Jordan algebra. Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671678.
[35] McCrimmon, K. The Zelmanov approach to Jordan homomorphisms of associative algebras. J. Algebra 123 (1989), 457477.
[36] Mackey, M. Local derivations on Jordan triples. Bull. Lond. Math. Soc. 45 (2013), 811824.
[37] Molnár, L. and Zalar, B. On automatic surjectivity of Jordan homomorphisms. Acta Sci. Math. (Szeged) 61 (1995), 413424.
[38] Molnár, L. On isomorphisms of standard operator algebras. Studia Math. 142 (2000), 295302.
[39] Smiley, M. F. Jordan homomorphisms onto prime rings. Trans. Amer. Math. Soc. 84 (1957), 426429.
[40] Sinclair, A. M. Jordan homomorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc. 24 (1970), 209214.
[41] Sinclair, A. M. Automatic continuity of linear operators. London Math. Soc. Lecture Note Ser. 21 (Cambridge University Press, Cambridge/New York 1976.
[42] Størmer, E. On the Jordan structure of C*-algebras. Trans. Amer. Math. Soc. 120 (1965), 438447.

The structure of triple homomorphisms onto prime algebras

  • CHENG–KAI LIU (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed