Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T14:09:30.092Z Has data issue: false hasContentIssue false

Two remarks on Wall's D2 problem

Published online by Cambridge University Press:  25 May 2018

IAN HAMBLETON*
Affiliation:
Department of Mathematics & Statistics, McMaster University, Ontario L8S 4K1, Canada. e-mail: hambleton@mcmaster.ca

Abstract

If a finite group G is isomorphic to a subgroup of SO(3), then G has the D2-property. Let X be a finite complex satisfying Wall's D2-conditions. If π1(X) = G is finite, and χ(X) ≥ 1 − def(G), then XS2 is simple homotopy equivalent to a finite 2-complex, whose simple homotopy type depends only on G and χ(X).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by NSERC Discovery Grant A4000.

References

REFERENCES

[1] Bass, H. Algebraic K-theory. (Benjamin, W. A., Inc., New York-Amsterdam, 1968).Google Scholar
[2] Bestvina, M. and Brady, N. Morse theory and finiteness properties of groups. Invent. Math. 129 (1997), 445470.Google Scholar
[3] Bridson, M. R. and Tweedale, M. Deficiency and abelianised deficiency of some virtually free groups. Math. Proc. Camb. Philos. Soc. 143 (2007), 257264.Google Scholar
[4] Brown, K. A. Relation modules of polycyclic-by-finite groups. J. Pure Appl. Algebra 20 (1981), 227239.Google Scholar
[5] Brown, K. S. and Kahn, P. J. Homotopy dimension and simple cohomological dimension of spaces. Comment. Math. Helv. 52 (1977), 111127.Google Scholar
[6] Browning, W. J. Homotopy types of certain finite cw-complexes with finite fundametal group. (ProQuest LLC, Ann Arbor, MI, 1978) Ph.D. thesis. Cornell University.Google Scholar
[7] Cohen, J. M. Complexes of cohomological dimension two. Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII (Amer. Math. Soc., Providence, R.I., 1978), pp. 221223.Google Scholar
[8] Coxeter, H. S. M. and Moser, W. O. J. Generators and relations for discrete groups. fourth ed. Ergeb. Math. Grenzgeb. [Results in Mathematics and Related Areas], vol. 14 (Springer-Verlag, Berlin-New York, 1980).Google Scholar
[9] Dunwoody, M. J. The homotopy type of a two-dimensional complex. Bull. London Math. Soc. 8 (1976), 282285.Google Scholar
[10] Eilenberg, S. and Ganea, T. On the Lusternik–Schnirelmann category of abstract groups. Ann. of Math. (2) 65 (1957), 517518.Google Scholar
[11] Hambleton, I. and Kreck, M. Cancellation of lattices and finite two-complexes. J. Reine Angew. Math. 442 (1993), 91109.Google Scholar
[12] Hambleton, I., Pamuk, S. and Yalçin, E. Equivariant CW-complexes and the orbit category. Comment. Math. Helv. 88 (2013), 369425.Google Scholar
[13] Harlander, J. Some aspects of efficiency. Groups—Korea '98 (Pusan) (de Gruyter, Berlin, 2000) pp. 165–180.Google Scholar
[14] Harlander, J. On the relation gap and relation lifting problem. Groups St Andrews 2013 London Math. Soc. Lecture Note Ser. vol. 422 (Cambridge University Press, Cambridge, 2015), pp. 278–285.Google Scholar
[15] Harlander, J. and Jensen, J. A. Exotic relation modules and homotopy types for certain 1-relator groups. Algebr. Geom. Topol. 6 (2006), 21632173.Google Scholar
[16] Harlander, J. and Jensen, J. A. On the homotopy type of CW-complexes with aspherical fundamental group. Topology Appl. 153 (2006), 30003006.Google Scholar
[17] Harlander, J. and Misseldine, A. On the K-theory and homotopy theory of the Klein bottle group. Homology Homotopy Appl. 13 (2011), 6372.Google Scholar
[18] Hog-Angeloni, C. and Metzler, W. (eds.). Two-dimensional homotopy and combinatorial group theory. London Mathematical Society Lecture Note Series, vol. 197 (Cambridge University Press, Cambridge, 1993).Google Scholar
[19] Ji, F. and Ye, S. Partial Euler characteristics, normal generations and the stable D(2) problem. arXiv:1503.01987 (2015).Google Scholar
[20] Jin, X., Su, Y. and Yu, L. Homology roses and the D(2)-problem. Sci. China Math. 58 (2015), 17531770.Google Scholar
[21] Johnson, F. E. A. Stable modules and the D(2)-problem. London Math. Soc. Lecture Note Series, vol. 301 (Cambridge University Press, Cambridge, 2003).Google Scholar
[22] Magurn, B. A., van der Kallen, W. and Vaserstein, L. N. Absolute stable rank and Witt cancellation for noncommutative rings. Invent. Math. 91 (1988), 525542.Google Scholar
[23] Mannan, W. H. The D(2) property for D 8. Algebr. Geom. Topol. 7 (2007), 517528.Google Scholar
[24] Mannan, W. H. Quillen's plus construction and the D(2) problem. Algebr. Geom. Topol. 9 (2009), 13991411.Google Scholar
[25] Mannan, W. H. Realising algebraic 2-complexes by cell complexes. Math. Proc. Camb. Phil. Soc. 146 (2009), 671673.Google Scholar
[26] Mannan, W. H. and O'Shea, S. Minimal algebraic complexes over D 4n. Algebr. Geom. Topol. 13 (2013), 32873304.Google Scholar
[27] McConnell, J. C. and Robson, J. C. Noncommutative Noetherian rings. revised ed. Graduate Studies in Math., vol. 30 (American Mathematical Society, Providence, RI, 2001), With the cooperation of Small, L. W.Google Scholar
[28] O'Shea, S. The D(2)-problem for dihedral groups of order 4n. Algebr. Geom. Topol. 12 (2012), 22872297.Google Scholar
[29] Stafford, J. T. Stable structure of noncommutative Noetherian rings. J. Algebra 47 (1977), 244267.Google Scholar
[30] Stafford, J. T. Absolute stable rank and quadratic forms over noncommutative rings. K-Theory 4 (1990), 121130.Google Scholar
[31] Swan, R. G. Minimal resolutions for finite groups. Topology 4 (1965), 193208.Google Scholar
[32] Wall, C. T. C. Finiteness conditions for CW-complexes. Ann. of Math. (2) 81 (1965), 5669.Google Scholar
[33] Wall, C. T. C. Finiteness conditions for cw complexes. II. Proc. Roy. Soc. Ser. A 295 (1966), 129139.Google Scholar
[34] Whitehead, J. H. C. Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. 45 (1939), 243327.Google Scholar