Skip to main content Accessibility help
×
×
Home

Ubiquity and large intersections properties under digit frequencies constraints

  • JULIEN BARRAL (a1) and STÉPHANE SEURET (a2)
Abstract

We are interested in two properties of real numbers: the first one is the property of being well-approximated by some dense family of real numbers {xn}n≥1, such as rational numbers and more generally algebraic numbers, and the second one is the property of having given digit frequencies in some b-adic expansion.

We combine these two ways of classifying the real numbers, in order to provide a finer classification. We exhibit sets S of points x which are approximated at a given rate by some of the {xn}n, those xn being selected according to their digit frequencies. We compute the Hausdorff dimension of any countable intersection of such sets S, and prove that these sets enjoy the so-called large intersection property.

Copyright
References
Hide All
[1]Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. 21 (1970), 111.
[2]Barral, J. and Seuret, S.Sums of Dirac masses and conditioned ubiquity. C. R. Acad. Sci. Paris, Ser. I 339 (2004), 787792.
[3]Barral, J. and Seuret, S.Heterogeneous ubiquitous systems and Hausdorff dimension in. Bull. Brazilian Math. Soc. 38 (3) (2007), 467515.
[4]Beresnevich, V., Dickinson, H. and Velani, S.Measure theoretic laws for limsup sets. Mem. Amer. Math. Soc. 179, number 840 (2006), 191.
[5]Beresnevich, V. and Velani, S.A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. 164 (2006), 971992.
[6]Bernik, V. I. and Tishchenko, K. I.Integral polynomials with an overfall of the coefficient values and Wirsing's theorem. Dokl. Akad. Nauk Belarusi 37 (1993), 911.
[7]Besicovitch, A. S.On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110 (1934), 321330.
[8]Brown, G., Michon, G. and Peyrière, J.On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.
[9]Bugeaud, Y.An inhomogeneous Jarnik theorem. J. Anal. Math. 92 (2004), 327349.
[10]Bugeaud, Y.Intersective sets and Diophantine approximation. Mich. Math. J. 52 (2004), 667682.
[11]Bugeaud, Y. and Teulié, O.Approximation d'un nombre réel par des nombres algébriques de degré donné. Acta Arith. 93 (2000), 7786.
[12]Bugeaud, Y.Diophantine approximation and Cantor sets. Math. Ann. 341 (2008), 677684.
[13]Cassels, J. W. S.An Introduction to Diophantine Approximation. (Cambridge University Press 1957).
[14]Dodson, M. M.Exceptional sets in dynamical systems and Diophantine approximation. Rigidity in Dynamics and Geometry (Cambridge, 2000), 7798, (Springer, 2002).
[15]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37 (1990), 5973.
[16]Dodson, M. M., Melián, M. V., Pestana, D. and Vélani, S. L., Patterson measure and Ubiquity. Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 3760.
[17]Durand, A.Ubiquitous systems and metric number theory. Adv. Math. 218 (2) (2008), 368394.
[18]Eggleston, H.The fractonial dimension of a set defined by decimal properties. Quart. J. Math. Oxford Ser. 20 (1949), 3136.
[19]Falconer, K. J.Classes of sets with large intersection. Mathematika 32 (1985), 191205.
[20]Falconer, K. J.Sets with large intersection properties. J. London Math. Soc. (2)(49) (1994), 267280.
[21]Falconer, K. J.Techniques in Fractal Geometry. (Wiley, 1997).
[22]Falconer, K. J.Representation of families of sets by measures, dimension spectra and Diophantine approximation. Math. Proc. Camb. Phil. Soc. 128 (2000), 111121.
[23]Hardy, G. H. and Wright, E. M.An Introduction to the Theory of Numbers. (Oxford University Press, 1978).
[24]Hutchinson, J. E.Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713747.
[25]Jaffard, S.The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114 (1999), 207227.
[26]Jaffard, S.On lacunary wavelet series. Ann. Appl. Prob. 10 (2000), 313329.
[27]Jarnik, V.Diophantischen approximationen und Hausdorffsches mass. Mat. Sbornik 36 (1929), 371381.
[28]Kingman, J. F.CCompletely random measures. Pacific J. Math. 21 (1967), 5978.
[29]Levesley, J., Salp, C. and Velani, S.On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338 (1) (2007), 97118
[30]Ma, J.-H., Wen, Z.-Y. and Wu, J.Besicovitch subsets of self-similar sets. Ann. Inst. Fourier, 52 (4) (2002), 10611074.
[31]Mattila, P., Geometry of Sets and Measures in Euclidian Spaces. Cambridge Studies in Adv. Math. (Cambridge University Press 1995).
[32]Shepp, L. A.Covering the line with random intervals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 163170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed