Skip to main content
    • Aa
    • Aa

Weak Finsler structures and the Funk weak metric


We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distances in the tautological weak Finsler structure of a domain and we show that these are given by the so-called Funk weak metric. We conclude the paper with a discussion of geodesics, of metric balls, of convexity, and of rigidity properties of the Funk weak metric.

Hide All
[1]Álvarez Paiva J. C. and Durán C. An Introduction to Finsler Geometry (Publicaciones de la Escuela Venezolana de Matematicas, 1998).
[2]Álvarez Paiva J. C. Some problems in Finsler geometry, in: Handbook of Differential Geometry. Vol. II, 133 (Elsevier, 2006).
[3]Bao D., Bryant R. L., Chern S. S. and Shen Z. (editors). A Sampler of Finsler Geometry, MSRI Publications 50 (Cambridge University Press, 2004).
[4]Bao D., Chern S. S. and Shen Z. An introduction to Riemann-Finsler geometry. Graduate Texts in Mathematics (Springer Verlag, 2000).
[5]Bao D., Robles C. and Shen Z. Zermelo navigation on Riemannian manifolds. J. Diff. Geom. 66 (2004), 377435.
[6]Busemann H. Metric methods in Finsler spaces and in the foundations of geometry. Ann. Math. Stud. 8 (Princeton University Press, 1942).
[7]Busemann H. Local metric geometry. Trans. Amer. Math. Soc. 56 (1944), 200274.
[8]Busemann H. The Geometry of Geodesics (Academic Press, 1955) (reprinted by Dover, 2005).
[9]Busemann H. Recent synthetic differential geometry. Ergeb. Math. Grenzgeb. 54 (1970).
[10]Chern S. S. and Shen Z. Riemann-Finsler geometry. Nankai Tracts Math. (2005).
[11]Eggleston H. G. Convexity. Cambridge Tracts in Mathematics and Mathematical Physics No. 47 (Cambridge University Press, 1958).
[12]Funk P. Über geometrien, bei denen die geraden die kürzesten sind. Math. Ann. 101 (1929), 226237.
[13]Hausdorff F. Set Theory (Chelsea, 1957) translation of Grundzüge der Mengenlehre, first ed. 1914.
[14]Hilbert D. Grundlagen der Geometrie. (B. G. Teubner, 1899), (several later editions revised by the author, and several translations).
[15]Minkowski H. Theorie der konvexen Körper, insbesondere Begründung ihres Ober-flächenbegriffs. in Gesammelte Abhandlungen (Teubner, Leipzig, 1911).
[16]Papadopoulos A. and Troyanov M. Weak metrics on Euclidean domains. JP Journal of Geometry and Topology. Volume 7, Issue 1 (March 2007), pp. 2344.
[17]Papadopoulos A. and Troyanov M. Harmonic symmetrization of convex sets and of Finsler structures, with applications to Hilbert geometry. Expo. Math. 27 (2009), 109124.
[18]Papadopoulos A. and Troyanov M. Symmetrization of convex sets and applications. in preparartion.
[19]Ribeiro H. Sur les espaces à métrique faible. Port. Math. 4 (1943), 2140.
[20]Thompson A. C. Minkowski Geometry. Encyclopedia of Mathematics and its Applications, 63 (Cambridge University Press, 1996).
[21]Webster R. Convexity (Oxford University Press, 1994).
[22]Zaustinsky E. M. Spaces with nonsymmetric distance. Mem. Amer. Math. Soc. No. 34 (1959).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 41 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.