Skip to main content
    • Aa
    • Aa

Weakly compact subsets of symmetric operator spaces

  • Peter G. Dodds (a1), Theresa K. Dodds (a1) and Ben De Pagter (a2)

Under natural conditions it is shown that the rearrangement invariant hull of a weakly compact subset of a properly symmetric Banach space of measurable operators affiliated with a semi-finite von Neumann algebra is again relatively weakly compact.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] C. A. Akemann . The dual space of an operator algebra. Trans. Amer. Math. Soc. 126 (1967), 286302.

[3] T. Ando . On fundamental properties of a Banach space with a cone. Pacific J. Math. 12 (1962), 11631169.

[4] K. M. Chong . Spectral orders, uniform integrability and Lebesgue's dominated convergence theorem. Trans. Amer. Math. Soc. 191 (1974), 395404.

[5] P. G. Dodds , T. K. Dodds and B. de Pagter . Non-commutative Banach function spaces. Math. Z. 201 (1989), 583597.

[8] J. Diestel . Sequences and Series in Banach Space. Graduate Texts in Math. no. 92 (Springer-Verlag, 1984).

[11] T. Fack and H. Kosaki . Generalized s-numbers of τ-measurable operators. Pacific J. Math. 123 (1986), 269300.

[19] E. Nelson . Notes on non-commutative integration. J. Fund. Anal. 15 (1974), 103116.

[22] J. V. Ryff . Orbits of L1-functions under doubly stochastic transformations. Trans. Amer. Math. Soc. 117 (1965), 92100.

[23] S. Sakai . Topological properties of W*-algebras. Proc. Japan Acad. 33 (1957), 439444.

[25] M. Takesaki . Theory of Operator Algebras I (Springer-Verlag, 1979).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.