Hostname: page-component-5b777bbd6c-5mwv9 Total loading time: 0 Render date: 2025-06-18T11:25:30.465Z Has data issue: false hasContentIssue false

Whitehead products and vector-fields on spheres

Published online by Cambridge University Press:  24 October 2008

I. M. James
Affiliation:
The Mathematical Institute 10 Parks Road Oxford

Extract

In the theory of vector-spaces an ordered, ortho-normal set of r vectors is called an r-frame. Let Sn denote the unit sphere in euclidean (n+ 1)-space, where n ≥ 1. By an r-field on Sn is meant a continuous function which assigns to each point of Sn an r-frame in the tangent space at that point. If q < r we obtain a q-field from an r-field by suppressing the first rq vectors of each r-frame. Certainly Sn admits a 0-field, and does not admit an (n+ 1)-field, since the tangent space is n-dimensional. An n-field on Sn is called a parallelism. Notice that an (n − 1)-field on Sn can always be extended to an n-field, since spheres are orientable. The problem is to determine the greatest value of r such that Sn admits an r-field.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

(1) Eckmann, B. Stetige Lösungen linearer Gleichungssysteme. Comment, math. helvet. 15 (1942), 318–39.Google Scholar
(2) Eckmann, B. Beweis des Satzes von Hurwitz–Radon. Comment, math. helvet. 15 (1942), 358–66.Google Scholar
(3) Hilton, P. J. and Whitehead, J. H. C. Note on the Whitehead product. Ann. Math., Princeton, 58 (1953), 429–42.Google Scholar
(4) Hopf, H. Ein topologischer Beitrag zur reellen Algebra. Comment. math. helvet. 13 (1940), 219–39.Google Scholar
(5) James, I. M. On the iterated suspension. Quart. J. Math. (2), 5 (1954), 110.Google Scholar
(6) James, I. M. On the suspension sequence. Ann. Math., Princeton, 65 (1957), 74107.Google Scholar
(7) James, I. M. Cross-section of Stiefel manifolds. Proc. Lond. Math. Soc. (3) (in the Press).Google Scholar
(8) James, I. M. and Whitehead, J. H. C. The homotopy theory of sphere-bundles over spheres (I). Proc. Lond. Math. Soc. (3) 4 (1954), 196218.Google Scholar
(9) Serre, J.-P. Homologie singulière des espaces fibrés. Ann. Math., Princeton, 54 (1951), 425505.Google Scholar
(10) Serre, J.-P. Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. math. helvet. 27 (1953), 198232.Google Scholar
(11) Steenrod, N. E. The topology of fibre bundles (Princeton, 1951).Google Scholar
(12) Steenrod, N. E. and Whitehead, J. H. C. Vector fields on the n-sphere. Proc. Nat. Acad. Sci., Wash., 37 (1951), 5863.Google Scholar
(13) Toda, H. Calcul de groupes d'homotopie des sphères. C.R. Acad. Sci., Paris, 240 (1955), 147–9.Google Scholar
(14) Toda, H. Le produit de Whitehead et l'invariant de Hopf. C.R. Acad. Sci., Paris, 241 (1955), 849–50.Google Scholar
(15) Whitehead, G. W. A generalization of the Hopf invariant. Ann. Math., Princeton, 51 (1950), 192237.Google Scholar