Skip to main content Accessibility help

A Whitehead–Ganea approach for proper Lusternik–Schnirelmann category

  • J. M. GARCÍA–CALCINES (a1), P. R. GARCÍA–DÍAZ (a1) and A. MURILLO MAS (a2)

We establish Whitehead and Ganea characterizations for proper LS-category. We use the embedding of the proper category into the exterior category, and construct in the latter a suitable closed model structure of Strøm type. Then, from the axiomatic LS-category arising from the exterior homotopy category we can recover the corresponding proper LS invariants. Some applications are given.

Hide All
[1]Ayala, R., Domínguez, E. and Quintero, A..A theoretical framework for proper homotopy theory. Math. Proc. Camb. Phil. Soc. 107 (1990), 475482.
[2]Ayala, R., Domínguez, E., Márquez, A. and Quintero, A.. Lusternik–Schnirelmann invariants in proper homotopy theory. Pacific J. Math. 153 (1992), 201215.
[3]Ayala, R. and Quintero, A.. On the Ganea strong category in proper homotopy. Proc. Edinburgh Math. Soc. 41 (1998), 247263.
[4]Baues, H. J.. Algebraic Homotopy. Cambridge Stud. Adv. Math., 15 (Cambridge University Press, 1989).
[5]Bousfield, A. K. and Kan, D. M.. Homotopy limits, completions and localizations. Lecture Notes in Mathematics 304 (1972).
[6]Cárdenas, M., Lasheras, F. F. and Quintero, A.. Minimal covers of open manifolds with half-spaces and the proper L-S category of product spaces. Bull. Belgian Math. Soc. 9 (2002), 419431.
[7]Cárdenas, M., Lasheras, F. F., Muro, F. and Quintero, A.. Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces. Topology Appl., in press. DOI: 10.1016/j.topol.2005.01.032.
[8]Cárdenas, M., Muro, F. and Quintero, A.. The proper L-S category of Whitehead manifolds. Topology Appl., in press. DOI: 10.1016/j.topol.2005.01.031.
[9]Clapp, M. and Puppe, D.. Invariants of the Lusternik–Schnirelmann type and the topology of critical sets. Trans. Amer. Math. Soc. 298 (1986), 603620.
[10]Cornea, O., Lupton, G., Oprea, J. and D. Tanré. Lusternik–Schnirelmann category. Math. Surveys Monogr. 103 (2003).
[11]Doeraene, J. P.. Homotopy pullbacks, homotopy pushouts and joins. Bull. Belg. Math. Soc. 5 (1) (1998), 15-37.
[12]Doeraene, J. P.. L. S.-category in a model category. J. Pure Appl. Algebra 84 (1993), 215261.
[13]Doeraene, J. P. and Tanré, D.. Axiome du cube et Foncteurs de Quillen. Ann. Instit. Fourier 45 (4), (1995), 10611077.
[14]Edwards, D. and Hastings, H.. Čech and Steenrod Homotopy Theories with Applications to Geometric Topology. Lecture Notes in Math. 542 (Springer, 1976).
[15]Félix, Y. and Murillo, A.. A bound for the nilpotency of a group of self homotopy equivalences. Proc. Amer. Math. Soc. 126 (2) (1998), 625627.
[16]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.. A closed model category for proper homotopy and shape theories. Bull. Austral. Math. Soc. 57 (2) (1998) 221242.
[17]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.. Closed simplicial model structures for exterior and proper homotopy theory. Appl. Categ. Structures 12 (3) (2004), 225243.
[18]García–Calcines, J. M. and Hernández–Paricio, L. J.. Sequential homology. Topology Appl. 114 (2001), 201225.
[19]James, I. M.. On category in the sense of Lusternik–Schnirelmann. Topology 17 (1978), 331349.
[20]Mather, M.. Pull-backs in Homotopy Theory. Canad. J. Math. 28 (2) (1976), 225263.
[21]Quillen, D.. Homotopical Algebra. Lecture Notes in Math. 43 (Springer, 1967).
[22]Strøm, A.. The homotopy category is a homotopy category. Arch. Math. 23 (1972), 435441.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed